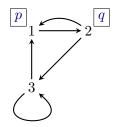
Exam Advanced Logic 2022-2023

Tuesday March 28, 2023, 08.30-10.45


8 exercises

If you use a bisimulation, you do not have to prove that it is a bisimulation.

Exercise 1. (10 points)

Consider the following model:

Give the complete game tree starting in state 3 with the formula $\Diamond \Diamond p \land \Diamond \Box q$, and indicate if possible a winning strategy for Verifier.

Exercise 2. (10 points)

Investigate using a tableau or sequents the universal validity of the formula

$$p \land \Diamond p \rightarrow \Diamond (p \land q) \lor \Box (\neg p \land \neg q)$$

In the case of non-validity, give your counterexample explicitly. You do not have to give the preprocessing explicitly.

Exercise 3. (10 points)

Prove validity of $\Box p \to \Diamond \Box \Diamond p$ on the class of reflexive frames.

Recall: a frame (W, R) is reflexive if Rxx for all $x \in W$.

Exercise 4. (10 points)

A frame $\mathcal{F} = (W, R)$ is said to have property P if for all $x, y, z \in W$: if Rxy and Ryz then not Rxz.

Show that property P is not definable in basic modal logic.

Exercise 5. (10 points)

Consider the formulas $\phi = p \to \Box\Box p$ and $\psi = p \to \Box\Box\Box p$.

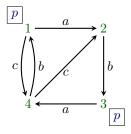
Give if possible a frame \mathcal{F} is which ϕ is valid but ψ is not valid, and a frame \mathcal{G} in which ψ is valid but ϕ is not valid. Prove only both invalidities.

Exercise 6. (10 points)

Show that $\Diamond \Box \Diamond p \to \Box \Diamond p$ is not derivable in system S4.

We recall the definitions of the Hilbert systems:

- system K is the most basic system with the tautologies of first-order propositional logic as axioms, the axiom for modal distribution $(\Box(p \to q) \to (\Box p \to \Box q))$, the rule for modus ponens, the rule for necessitation (if $\vdash \phi$ then $\vdash \Box \phi$), and the rule for substitution;
- system T is system K plus the truth axiom (or veridicality): $A1: \Box p \to p$;
- system S4 is system T plus the axiom of positive introspection: $A2: \Box p \to \Box \Box p;$
- system S5 is system S4 plus the axiom of negative introspection: $A3: \neg \Box p \rightarrow \Box \neg \Box p$.


Exercise 7. (10+10 points)

Prove or disprove universal validity in PDL-models of the following:

- (i) $[a^*]p \wedge [b^*]p \to [(a \cup b)^*]p$,
- (ii) $[(a \cup b)c]p \rightarrow [ac \cup bc]p$.

Exercise 8. (10 points)

Consider the PDL-extension of the following $\{a, b, c\}$ -frame.

First, compute the accessibility relation for $\alpha = \mathsf{while}\, p \, \mathsf{do} \, ab \cup c^*$. Give at least as intermediate steps the accessibility relation for $ab \cup c^*$ and for $(p?; ab \cup c^*)^*$. Second, what are the states in which $p \to [\alpha] \neg p$ is true? (No proof needed.)

The exam grade is (the total number of points plus 10) divided by 10.

.