Midterm Exam Advanced Logic 2022-2023

Thursday March 2, 2023, 18.45-21.00

5 exercises

If you use a bisimulation, you do not have to prove that it is a bisimulation.

Exercise 1. (2 points)

Give a formula ϕ that is true in a state x if and only if x does not have a blind successor.

We work in a model $\mathcal{M} = ((W, R), V)$. A successor of a state a is a state $b \in W$ with Rab, and a state a is blind if there is no $b \in W$ such that Rab.

Exercise 2. (4 points)

Prove or disprove in words (no sequents, no tableau) the universal validity of the following formula: $\Diamond(p \to q) \to (\Box p \to \Diamond q)$.

Exercise 3. (4 points)

Investigate using either a tableau or sequents the universal validity of the following formula: $p \land \Diamond p \rightarrow \Diamond (p \land \neg q) \lor \Box q$.

In the case of non-validity, give your counterexample explicitly. You do not have to give the steps of the pre-processing.

Exercise 4. (5 points)

Consider the frame $\mathcal{F} = (W, R)$ with W and R given by

$$W = \{a, b, c, d\}$$

$$R = \{(a, b), (b, c), (c, a), (d, a), (d, c)\}$$

and the model $\mathcal{M} = (\mathcal{F}, V)$ with valuation V defined by $V(p) = \{a, c\}$. Prove that $p \to \Box \Box \Box p$ is globally true in \mathcal{M} , but not valid in \mathcal{F} .

Exercise 5. (5 points)

A frame (W,R) is said to be binary if it has the following property: for every $x \in W$ there are $y,z \in W$ such that Rxy and Rxz and $y \neq z$. So every state has at least two different successors.

Prove that 'being binary' is not definable by a formula in Basic Modal Logic.

The exam grade is $((number\ of\ points)/20) \times 9) + 1$