Exam Advanced Logic

VU University Amsterdam, 1 June 2015, 18:30–21:15

This exam consists of four questions. In total you can score 90 points as indicated per question. The final grade is the minimum of 10 and (points/10 + 1 + bonus).

- **1.** (a) Show that the formula $\Box p \to \Diamond \Box \Diamond p$ is valid on all reflexive frames. (8 pt)
 - (b) Is the formula $\Box p \to \Diamond \Box \Diamond p$ valid *only* on reflexive frames? Motivate your answer. (8 pt)
 - (c) What frame property is characterised by the formula $\Box p \lor \Box \neg p$? Give a formal definition of the property, and prove the characterisation. (8 pt)
- **2.** Consider the frames \mathcal{A} and \mathcal{B} defined for the language with modal operators $\langle a \rangle$ and $\langle b \rangle$ defined by $\mathcal{A} = (W^{\mathcal{A}}, R_a^{\mathcal{A}}, R_b^{\mathcal{A}})$ and $\mathcal{B} = (W^{\mathcal{B}}, R_a^{\mathcal{B}}, R_b^{\mathcal{B}})$, where

$$W^{\mathcal{A}} = \{s, t\}$$

$$W^{\mathcal{B}} = \mathbb{N} = \{0, 1, 2, ...\}$$

$$R_a^{\mathcal{A}} = \{(s, t)\}$$

$$R_b^{\mathcal{B}} = \{(2n, 2n + 1) \mid n \in \mathbb{N}\}$$

$$R_b^{\mathcal{B}} = \{(2n + 1, 2n + 2) \mid n \in \mathbb{N}\} .$$

- (a) If possible, give a formula valid in \mathcal{A} but not in \mathcal{B} , and prove both facts. Otherwise, explain why such a formula does not exist. (8 pt)
- (b) Same question as 2 (a) but now with the roles of \mathcal{A} and \mathcal{B} interchanged. (8 pt)

Consider the valuations $V^{\mathcal{A}}$ and $V^{\mathcal{B}}$ defined on the respective frames \mathcal{A} and \mathcal{B} by

$$V^{\mathcal{A}}(p) = \{s\} \qquad \qquad V^{\mathcal{B}}(p) = \{2n \mid n \in \mathbb{N}\}.$$

(c) Show that state s of the model (A, V^A) is bisimilar to state 42 of the model (B, V^B) .

3. Consider the models \mathcal{M} and \mathcal{N} defined by:

- (a) Show that there is no modal formula distinguishing state n_3 in model \mathcal{N} from state t in model \mathcal{M} .
- (b) Let $\widehat{\mathcal{N}}$ be the PDL-extension of model \mathcal{N} . Compute the transition relation \widehat{R}_{β} corresponding to the PDL-program $\beta =$ while p do abba. (8 pt)
- (c) Determine whether the PDL-formula $[\beta]p \leftrightarrow p$ globally holds in $\widehat{\mathcal{N}}$. Prove your answer. (6 pt)
- 4. The Hilbert system for the logic S5 is the extension of the Hilbert system for the basic modal logic K with A1: the truth axiom (if something is known, it is true), A2: the axiom of positive introspection, and A3: the axiom of negative introspection.
 - (a) Prove that every reflexive and Euclidean relation is transitive. How can this be used to show that A2 follows from A1 and A3?

 (7 pt)
 - (b) Formulate the completeness theorem for S5. (5 pt)
 - (c) Show that $\neg K \neg (p \land Kq) \leftrightarrow (\neg K \neg p \land Kq)$ is a theorem of S5. (For this you may use your answer to $\mathbf{4}(\mathbf{b})$.)