Possible Answers to

Exam Advanced Logic

VU University Amsterdam, 26 March 2014, 15:15–18:00

Dimitri Hendriks

1. (a) Define what it means that a modal formula is globally true in a model. (3 pt) A formula φ is globally true in a model $\mathcal{M} = (W, R, V)$, which we denote by $\mathcal{M} \models \varphi$, if φ is true in all of its points, that is,

$$\mathcal{M} \vDash \varphi \iff \mathcal{M}, w \vDash \varphi, \text{ for all } w \in W.$$

(b) Define what it means that a modal formula is valid in a frame. (3 pt) A formula φ is valid in a frame $\mathcal{F} = (W, R)$, which we denote by $\mathcal{F} \models \varphi$, if φ is globally true in all models based on \mathcal{F} , that is,

$$\mathcal{F} \vDash \varphi \iff (\mathcal{F}, V) \vDash \varphi$$
, for all valuations $V : \Omega \to \mathbf{2}^W$,

where Ω is a set of propositional variables containing the variables that occur in φ .

Consider the frame $\mathcal{F} = (W, R)$ with W and R given by

$$W = \{a, b, c, d\}$$

$$R = \{(a, b), (b, c), (c, a), (d, a), (d, c)\}$$

and the model $\mathcal{M} = (\mathcal{F}, V)$ with valuation V defined by $V(p) = \{a, c\}$.

(c) Give a graphical representation of \mathcal{M} . (2 pt)

- (d) Prove that $p \to \Box\Box\Box p$ is globally true in \mathcal{M} , but not valid in \mathcal{F} . (4+4 pt)
 - To prove that $\mathcal{M} \vDash p \to \Box\Box\Box p$, we have to show $\mathcal{M}, x \vDash p \to \Box\Box\Box p$ for all $x \in \{a, b, c, d\}$. In points b and d the implication $p \to \Box\Box\Box p$ is trivially true because they do not satisfy p. To see that $\mathcal{M}, a \vDash \Box\Box\Box p$ we note that $a \coloneqq a \vDash a$ and $a \vDash a$
 - To prove that $\mathcal{F} \nvDash p \to \Box\Box\Box p$, we have find a valuation V' on \mathcal{F} and a point $x \in W$ such that $\mathcal{F}, V', x \nvDash p \to \Box\Box\Box p$.

We take $V'(p) = \{d\}$. Then, clearly $\mathcal{F}, V', d \vDash p$ and $\mathcal{F}, V', d \nvDash \Box \Box \Box p$ because $b \in R^3[d]$ and $\mathcal{F}, V', b \nvDash p$.

(e) Prove that for any formula φ , the formula $\Box \varphi \leftrightarrow \Box \Box \Box \varphi$ is valid in \mathcal{F} . (8 pt)

This follows from the observation that, in the frame \mathcal{F} , $R^4 = R$, and the general fact that $\mathcal{G} \vDash [\alpha]p \leftrightarrow [\beta]p$ follows from $R_{\beta} = R_{\alpha}$, for all frames \mathcal{G} with relations R_{α} and R_{β} . A more ad hoc proof goes as follows:

We show that $\mathcal{F} \vDash \Box p \leftrightarrow \Box \Box \Box \Box p$. Then $\mathcal{F} \vDash \Box \varphi \leftrightarrow \Box \Box \Box \Box \varphi$, with φ an arbitrary formula, follows since validity is closed under substitution, that is, for all frames \mathcal{G} , modal formulas ψ and substitutions σ , if $\mathcal{G} \vDash \psi$ then $\mathcal{G} \vDash \psi^{\sigma}$.

For $x \in \{a, b, c\}$ we write x' to denote the (unique) y such that Rxy; so a' = b, b' = c, and c' = a; clearly we have x''' = x. For $x \in \{a, b, c\}$ we see that

$$\mathcal{N}, x \vDash \Box \Box \Box p \iff \mathcal{N}, x' \vDash \Box \Box \Box p$$

¹Recall that we use the notation R[x] for the set of R-successors of x, i.e., $R[x] = \{y \mid Rxy\}$. Moreover $R^3 = R$; R; R where R; S denotes the relational composition of R and S, that is, R; $S = \{(x,y) \mid \exists u ((x,u) \in R \text{ and } (u,y) \in S)\}$. By the way, instead of the semi-colon ';', many people use the symbol \circ .

$$\iff \mathcal{N}, x'' \vDash \Box \Box p$$

$$\iff \mathcal{N}, x''' \vDash \Box p$$

$$\iff \mathcal{N}, x \vDash \Box p$$

$$\iff \mathcal{N}, x' \vDash p$$

For d we find

$$\mathcal{N}, d \vDash \square \square \square p \iff \mathcal{N}, a \vDash \square \square \square p \text{ and } \mathcal{N}, c \vDash \square \square \square p$$
$$\iff \mathcal{N}, a \vDash p \text{ and } \mathcal{N}, c \vDash p$$
$$\iff \mathcal{N}, d \vDash \square p$$

Thus we have shown that $\mathcal{F}, U, x \models \Box\Box\Box\Box p$ iff $\mathcal{F}, U, x \models \Box p$ for all $x \in \{a, b, c, d\}$, i.e., that $\mathcal{F}, U \models \Box p \leftrightarrow \Box\Box\Box\Box p$.

Since U was an arbitrary valuation, we conclude that $\mathcal{F} \models \Box p \leftrightarrow \Box \Box \Box p$.

2. (a) Let I be an arbitrary index set, and let $i, j \in I$. Prove that the formula $p \to [i]\langle j \rangle p$ characterizes the class of I-frames $\mathcal{F} = (W, \{R_k \mid k \in I\})$ that satisfy the property $R_i \subseteq R_i^{-1}$.

The multi-modal formula $p \to [i]\langle j \rangle p$ characterizes the property $R_i \subseteq R_j^{-1}$ if

$$\mathcal{F} \vDash p \to [i]\langle j \rangle p \iff R_i \subseteq R_j^{-1}$$

for all *I*-frames $\mathcal{F} = (W, \{R_k \mid k \in I\})$ and $i, j \in I$. So let \mathcal{F} be an arbitrary *I*-frame, and let $i, j \in I$. We prove the two directions:

(\Rightarrow) By contraposition. Assume that $R_i \not\subseteq R_j^{-1}$. We prove $\mathcal{F} \nvDash p \to [i]\langle j \rangle p$. By the assumption there are (not necessarily distinct) points a and b such that $R_i ab$ and $\neg R_j ba$. In order to show that $p \to [i]\langle j \rangle p$ is not valid in \mathcal{F} we have to find a valuation V on \mathcal{F} and a point x such that $\mathcal{M}, x \vDash p$ and $\mathcal{M}, x \nvDash [i]\langle j \rangle p$.

We choose V to be such that p holds in a only, $V(p) = \{a\}$. Then in the model $\mathcal{M} = (\mathcal{F}, V)$ we have $\mathcal{M}, b \nvDash \langle j \rangle p$ since $\neg R_j ba$. Hence, due to $R_i ab$, also $\mathcal{M}, a \nvDash [i]\langle j \rangle p$. We conclude that $\mathcal{M}, a \nvDash p \to [i]\langle j \rangle p$. Hence $\mathcal{F} \nvDash p \to [i]\langle j \rangle p$.

 (\Leftarrow) Assume $R_i \subseteq R_j^{-1}$, that is, $R_i uv$ implies $R_j vu$, for all points u and v.

We have to show that $p \to [i]\langle j \rangle p$ is valid in \mathcal{F} . Let V be an arbitrary valuation on \mathcal{F} , x an arbitrary point in the model $\mathcal{M} = (\mathcal{F}, V)$, and assume $\mathcal{M}, x \vDash p$. In order to show $\mathcal{M}, x \vDash [i]\langle j \rangle p$, we consider an arbitrary R_i -successor y of x, $R_i x y$, and prove $\mathcal{M}, y \vDash \langle j \rangle p$. By the assumption $R_i \subseteq R_j^{-1}$ we know that $R_j y x$. Hence, since we have $\mathcal{M}, x \vDash p$, it follows that $\mathcal{M}, y \vDash \langle j \rangle p$.

(b) Use the result of the previous question to show that the formula $\langle i \rangle[j]p \to p$ also characterizes the frame property $R_i \subseteq R_j^{-1}$. (7 pt)

We reason as follows

$$\mathcal{F} \vDash \langle i \rangle [j] p \to p \iff \mathcal{F} \vDash \langle i \rangle [j] \neg p \to \neg p \tag{1}$$

$$\iff \mathcal{F} \vDash p \to \neg \langle i \rangle [j] \neg p \tag{2}$$

$$\iff \mathcal{F} \vDash p \to [i] \neg [j] \neg p \tag{3}$$

$$\iff \mathcal{F} \vDash p \to [i]\langle j \rangle p \tag{4}$$

$$\iff R_i \subseteq R_i^{-1}$$
 (5)

where the steps are justified as follows:

- (1) The direction \Rightarrow follows from the fact that validity is closed under substitution; here we substitute $\neg p$ for p. The direction \Leftarrow uses additionally that we may replace subformulas by equivalent subformulas; so from $\mathcal{F} \models \langle i \rangle[j] \neg p \rightarrow \neg p$ we infer $\mathcal{F} \models \langle i \rangle[j] \neg p \rightarrow \neg p$ and then replace $\neg \neg p$ by p.
- (2) These are equivalent since one formula is the contraposition of the other.
- (3) $\neg \langle i \rangle [j] \neg p$ is equivalent to $[i] \neg [j] \neg p$.
- (4) $\neg [j] \neg p$ is equivalent to $\langle j \rangle p$.
- (5) By the result proven in **2.(a)**.
- (c) Are the formulas $p \to [i]\langle j \rangle p$ and $\langle i \rangle [j]p \to p$ equivalent? Prove your answer.

 (8 pt)

No, they are not. Clearly, *inside* the class of *I*-frames with the property $R_i \subseteq R_j^{-1}$ they are equivalent, as we just have shown that they are both valid in that class. However, *outside* this class they need not be equivalent, as we show by the following counterexample.

First we recall the definition of equivalence of modal formulas: Two formulas φ and ψ are equivalent, which we denote by $\varphi \equiv \psi$, if $\varphi \leftrightarrow \psi$ is universally

valid. In other words, $\varphi \equiv \psi$ when $\mathcal{M}, x \vDash \varphi$ iff $\mathcal{M}, x \vDash \psi$ for all models \mathcal{M} and all points x of \mathcal{M} .

Now consider the following model $\mathcal{M} = (\{a\}, \{R_1, R_2\}, V)$ with $R_1 = \{(a, a)\}$, $R_2 = \varnothing$, and $V(p) = \varnothing$. Then we have $\mathcal{M}, a \vDash p \to [1]\langle 2 \rangle p$ because of $\mathcal{M}, a \nvDash p$. On the other hand $\mathcal{M}, a \vDash [2]p$ by $R_2 = \varnothing$, and so, by R_1aa , we have $\mathcal{M}, a \vDash \langle 1 \rangle [2]p$. In combination with $\mathcal{M}, a \nvDash p$ this gives $\mathcal{M}, a \nvDash \langle 1 \rangle [2]p \to p$. We conclude that $(p \to [1]\langle 2 \rangle p) \not\equiv (\langle 1 \rangle [2]p \to p)$.

3. Consider the $\{a,b\}$ -models \mathcal{M} and \mathcal{N} defined by:

(a) Define model \mathcal{M} by means of set notation.

(2 pt)

$$\mathcal{M} = (W^{\mathcal{M}}, R_a^{\mathcal{M}}, R_b^{\mathcal{M}}, V^{\mathcal{M}})$$

$$W^{\mathcal{M}} = \{s, t, u\}$$

$$R_a^{\mathcal{M}} = \{(t, s), (u, t)\}$$

$$R_b^{\mathcal{M}} = \{(s, t), (t, u)\}$$

$$V^{\mathcal{M}}(p) = \{t\}$$

(Likewise we will use $\mathcal{N} = (W^{\mathcal{N}}, R_a^{\mathcal{N}}, R_b^{\mathcal{N}}, V^{\mathcal{N}}).)$

(b) Is there a modal formula that distinguishes state n_3 in model \mathcal{N} from state t in model \mathcal{M} ? Prove your answer. (10 pt)

No, there is no such formula. We show that t and n_3 are bisimilar, and we know that bisimilar states have the same modal theory: if pointed models

 \mathcal{X}, x and \mathcal{X}', x' are bisimilar then, for all modal formulas φ , it holds that $\mathcal{X}, x \vDash \varphi$ if and only if $\mathcal{X}', x' \vDash \varphi$.

Define the relation $G \subseteq W^{\mathcal{M}} \times W^{\mathcal{N}}$ by

$$G := \{(s, n_4), (s, n_5), (t, n_2), (t, n_3), (u, n_1)\}.$$

We show that G is a bisimulation:

- First of all, we notice that G satisfies the requirement of atomic harmony: for all $(x, x') \in G$ and all propositional variables q we have $\mathcal{M}, x \models q$ iff $\mathcal{N}, x' \models q$.
- To verify the zig-condition of G, for every pair $(x, x') \in G$, for every $i \in \{a, b\}$, and for every $y \in W^{\mathcal{M}}$ with $R_i^{\mathcal{M}} xy$, we have to find a point $y' \in W^{\mathcal{N}}$ such that $R_i^{\mathcal{N}} x'y'$ and $(y, y') \in G$. This we indicate by $\frac{x}{|y|} \frac{x'}{|y'|} i$.

$$\frac{s \mid n_4}{t \mid n_3} b \quad \frac{s \mid n_5}{t \mid n_2} b \quad \frac{t \mid n_2}{s \mid n_4} a \quad \frac{t \mid n_2}{u \mid n_1} b \quad \frac{t \mid n_3}{s \mid n_5} a \quad \frac{t \mid n_3}{u \mid n_1} b \quad \frac{u \mid n_1}{t \mid n_3} a$$

o Similarly for diagrams showing the zag condition (when a step $R_i^{\mathcal{N}}x'y'$ has to be matched by a step $R_i^{\mathcal{M}}xy$) we write $\frac{x \mid x'}{y \mid y'}i$.

$$\frac{s \mid n_4}{t \mid n_3} b \quad \frac{s \mid n_5}{t \mid n_2} b \quad \frac{s \mid n_5}{t \mid n_2} b \quad \frac{t \mid n_2}{s \mid n_4} a \quad \frac{t \mid n_2}{u \mid n_1} b \quad \frac{t \mid n_3}{s \mid n_5} a \quad \frac{t \mid n_3}{u \mid n_1} b \quad \frac{u \mid n_1}{t \mid n_2} a \quad \frac{u \mid n_1}{t \mid n_3} a$$

(One diagram more than for zig due to two outgoing a-steps from n_1 .)

(c) Let $\widehat{\mathcal{N}}$ be the PDL-extension of model \mathcal{N} . Compute the transition relation \widehat{R}_{π} corresponding to the PDL-program $\pi = \text{if } p \text{ then } ba \text{ else } ab$. (8 pt)

In PDL syntax we have (if p then ba else ab) = $(p?;ba) \cup (\neg p?;ab)$. We compute the transition relations of the component programs:

$$\begin{split} \widehat{R}_{a} &= R_{a} = \{(n_{1}, n_{2}), (n_{1}, n_{3}), (n_{2}, n_{4}), (n_{3}, n_{5})\} \\ \widehat{R}_{b} &= R_{b} = \{(n_{2}, n_{1}), (n_{3}, n_{1}), (n_{4}, n_{3}), (n_{5}, n_{2})\} \\ \widehat{R}_{ba} &= \widehat{R}_{b}; \widehat{R}_{a} = \{(n_{2}, n_{2}), (n_{2}, n_{3}), (n_{3}, n_{2}), (n_{3}, n_{3}), (n_{4}, n_{5}), (n_{5}, n_{4})\} \\ \widehat{R}_{p?} &= \{(x, x) \mid \mathcal{N}, x \models p\} = \{(n_{2}, n_{2}), (n_{3}, n_{3})\} \\ \widehat{R}_{v?ba} &= \widehat{R}_{v?}; \widehat{R}_{ba} = \{(n_{2}, n_{2}), (n_{2}, n_{3}), (n_{3}, n_{2}), (n_{3}, n_{3})\} \end{split}$$

$$\widehat{R}_{ab} = \widehat{R}_a; \widehat{R}_b = \{(n_1, n_1), (n_2, n_3), (n_3, n_2)\}$$

$$\widehat{R}_{\neg p?} = \{(x, x) \mid \mathcal{N}, x \vDash \neg p\} = \{(n_1, n_1), (n_4, n_4), (n_5, n_5)\}$$

$$\widehat{R}_{\neg p?ab} = \widehat{R}_{\neg p?}; \widehat{R}_{ab} = \{(n_1, n_1)\}$$

$$\widehat{R}_{\pi} = \widehat{R}_{p?ba} \cup \widehat{R}_{\neg p?ab} = \{(n_1, n_1), (n_2, n_2), (n_2, n_3), (n_3, n_2), (n_3, n_3)\}$$

(d) Determine whether the PDL-formula $[b]\bot \to ([\pi]p \to \bot)$ globally holds in $\widehat{\mathcal{N}}$.

Prove your answer. (6 pt)

Yes, $\widehat{\mathcal{N}} \models [b] \perp \rightarrow ([\pi]p \rightarrow \bot)$ holds. To see this, we only have to consider the point n_1 , as this is the only point that is blind with respect to the relation R_b ; in all other points $x \neq n_1$ we have $\mathcal{N}, x \nvDash [b] \perp$ and so the implication $[b] \perp \rightarrow ([\pi]p \rightarrow \bot)$ is trivially true there. So $\widehat{\mathcal{N}}, n_1 \models [b] \perp$. Now for $\widehat{\mathcal{N}}, n_1 \models [\pi]p \rightarrow \bot$ to hold we have to verify that $\widehat{\mathcal{N}}, n_1 \nvDash [\pi]p$, i.e., we need an R_{π} -successor of n_1 where p does not hold. Indeed, we have $(n_1, n_1) \in R_{\pi}$ and $\widehat{\mathcal{N}}, n_1 \nvDash p$ and so $\widehat{\mathcal{N}}, n_1 \nvDash [\pi]p$.

4. System T is the extension of the minimal modal logic K with the axiom of veridicality (if something is known, it is true). System S4 extends T with the axiom of positive introspection; S5 extends S4 with the axiom of negative introspection.

Prove or disprove the following epistemic claims (you may use completeness theorems):

(a)
$$\vdash_T p \to \neg K \neg p$$
 (5 pt)

- 1. $Kp \to p$ (veridicality)
- 2. $K \neg p \rightarrow \neg p$ (subst. instance of 1)
- 3. $(a \to \neg b) \to (b \to \neg a)$ (tautology)
- 4. $(K \neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg K \neg p)$ (subst. instance of 3)
- 5. $p \to \neg K \neg p$ (modus ponens, 4, 2)

(b)
$$\vdash_{S4} q \lor K \neg Kq$$
 (5 pt)

We show that $q \lor K \neg Kq$ cannot be derived in S4 by applying the completeness theorem for S4 which states

$$\vdash_{\mathit{S4}} \varphi \iff \mathsf{Refl} \cap \mathsf{Trans} \vDash \varphi \,.$$

That is, we give a concrete model $\mathcal{M} = (W, R, V)$ with R reflexive and transitive, and a point x such that both $\mathcal{M}, x \nvDash q$ and $\mathcal{M}, x \nvDash K \neg Kq$.

Consider the following model based on a reflexive an transitive frame:

In this model we have that $a \nvDash q$ and $a \nvDash K \neg Kq$. The latter holds since $b \vDash Kq$, so $b \nvDash \neg Kq$, and so $a \nvDash K \neg Kq$. Hence $a \nvDash q \lor K \neg Kq$, and Refl \cap Trans $\nvDash q \lor K \neg Kq$. By the above stated completeness theorem for S4 we thus obtain $\nvdash_{S4} q \lor K \neg Kq$

(c)
$$\vdash_{S5} \neg KKp \to K \neg Kp$$
 (5 pt)

We give a derivation in S5:

1.	Kp o KKp	(positive introspection)
2.	$(A \to B) \to (\neg B \to \neg A)$	(tautology)
3.	$(Kp \to KKp) \to (\neg KKp \to \neg Kp)$	(subst. instance of 1)
4.	$\neg KKp \to \neg Kp$	(modus ponens, 3, 1)
5.	$\neg Kp \to K \neg Kp$	(negative introspection)
6.	$(A \to B) \to ((B \to C) \to (A \to C))$	(tautology)
7.	$4 \to (5 \to (\neg KKp \to K \neg Kp))$	(subst. instance of 8)
8.	$5 \to (\neg KKp \to K \neg Kp)$	(modus ponens, 7, 4)
9.	$\neg KKp \to K \neg Kp$	(modus ponens, 8, 5)

(Alternatively we can show that the formula is valid in all frames (W, R), where R is an equivalence relation, and use the completeness theorem for system S5 to conclude that the formula is derivable in S5.)