Exam Advanced Logic

Vrije Universiteit Amsterdam, 28 March 2012, 08:45-11:30

This exam consists of four questions. Use of textbook, definition sheets, etc. is not allowed.

- 1. (a) Prove or disprove the validity of $\Box \Diamond \Box p \rightarrow \Diamond p$ in reflexive frames.
 - (b) Show that $\mathfrak{F} \vDash \Diamond r \to \Box r$ implies $\mathfrak{F} \vDash (\Diamond p \land \Diamond q) \to \Diamond (p \land q)$.
 - (c) Is the formula $\Box p \to \Box \Box \Box p$ valid in transitive frames? Is it valid only in transitive frames? Prove your answers.
 - (d) Show that validity of the formula $\Diamond \Box p \to p$ in a frame $\langle W, R \rangle$ implies that R is symmetric.
- 2. Consider the frame $\mathfrak{F} = \langle H, R \rangle$ with $H = \{1, 2, ..., 24\}$ and $R = \{\langle 1, 8 \rangle, \langle 2, 9 \rangle, ..., \langle 17, 24 \rangle, \langle 18, 1 \rangle, ..., \langle 23, 6 \rangle, \langle 24, 7 \rangle\}$, so that the future of h is precisely 7 hours later. We extend the basic temporal language with an operator pm (for 'post meridiem') with the following semantics:

$$\langle \mathfrak{F}, V \rangle, h \vDash \mathsf{pm} \, \varphi \quad \Longleftrightarrow \quad h \in \{13, 14, \dots, 23, 24\} \text{ and } \langle \mathfrak{F}, V \rangle, h \vDash \varphi$$

- (a) Show that the formulas $\langle F \rangle p \to \langle F \rangle \langle F \rangle p$ and $\neg (\langle F \rangle p \to \langle F \rangle \langle F \rangle p)$ are not valid in \mathfrak{F} .
- (b) Show that for all models \mathfrak{M} on the frame \mathfrak{F} we have the following equivalence:

$$\mathfrak{M}, h \vDash \langle F \rangle \mathsf{pm} \ \langle P \rangle \varphi \quad \Longleftrightarrow \quad h \in \{6,7,\ldots,17\} \ \text{and} \ \mathfrak{M}, h \vDash \varphi$$

(see next page)

3. Consider the following models \mathcal{A} and \mathcal{B} :

- (a) Define a relation $E \subseteq \{k, \ell, m\} \times \{u, v, w, v', w'\}$ such that $E : A, k \leftrightarrow B, u$. Only show that E satisfies the backwards condition (zag) of bisimulations.
- (b) Is there a formula which is true in state k but false in state u? Explain.
- (c) Let \widehat{A} be the PDL-extension of model A. Compute the transition relation \widehat{R}_{α} corresponding to the PDL-program α :

$$\alpha = \text{if } p \text{ then } (bc)^* \text{ else } (a \cup c)^*$$

- (d) Determine for each of the PDL-formulae $\langle \alpha \rangle p$ and $[\alpha]p$ whether it holds in $\widehat{\mathcal{A}}$.
- 4. The proof system S4 is the extension of the base system K with the axioms of veridicality (A1) and positive introspection (A2).
 - (a) Give a derivation for $\vdash_{S4} K \neg KKp \rightarrow K \neg Kp$.
 - (b) Show that the axiom of negative introspection (A3) is not derivable in S4.
 - (c) A relation R is euclidian if $Rxy \wedge Rxz \rightarrow Ryz$. Show that a reflexive and euclidian relation is symmetric.
 - (d) Consider the proof system S obtained by extending the basic proof system K with the axioms of veridicality (A1) and of negative introspection (A3). Show that the formula $p \to K \neg K \neg p$ is derivable in S.