Exam Advanced Logic

Vrije Universiteit Amsterdam, 30 May 2011, 18:30–21:15

This exam consists of four questions. Use of textbook, definition sheets, etc. is not allowed.

- 1. (a) Prove or disprove the validity of $\Box \Diamond \Box p \rightarrow \Diamond p$ in reflexive frames.
 - (b) Prove or disprove the validity of $p \to \Diamond \Box p$ in reflexive, transitive frames.
 - (c) Is the formula $\Box p \to \Box \Box \Box p$ valid in transitive frames? Is it valid only in transitive frames? Prove your answers.
 - (d) Show that the frame property $\forall xy (Rxy \rightarrow x = y)$ is characterized by the modal formula $p \rightarrow \Box p$.
- 2. Consider the extension of the basic modal language with an operator D whose semantics is given by:

 $\mathcal{M}, s \vDash D\varphi \iff \text{there exists } t \neq s \text{ such that } \mathcal{M}, t \vDash \varphi.$

Let \mathcal{F} en \mathcal{G} be the frames defined by the following pictures:

- (a) Is the formula $\Diamond p \to Dp$ valid in \mathcal{F} ? Explain your answer.
- (b) Is the formula $\Diamond p \to Dp$ valid in \mathcal{G} ? Explain your answer.
- (c) Show that the formula $\Diamond p \to Dp$ characterizes the class of irreflexive frames.
- (d) Show that D is not definable in the basic modal language.

3. Consider the $\{a,b,c\}$ -models \mathcal{A} and \mathcal{B} defined by:

- (a) Define a relation $E \subseteq \{k, \ell, m\} \times \{u, v, w, v', w'\}$ such that $E : A, k \leftrightarrow B, u$. Only show that E satisfies the backwards condition (zag) of bisimulations.
- (b) Is there a formula which is true in state k but false in state u? Explain.
- (c) Let \widehat{A} be the PDL-extension of model A. Compute the transition relation \widehat{R}_{α} corresponding to the PDL-program α :

$$\alpha = \text{if } p \text{ then } (bc)^* \text{ else } (a \cup c)^*$$

- (d) Determine for each of the PDL-formulae $\langle \alpha \rangle p$ and $[\alpha]p$ whether it holds in $\widehat{\mathcal{A}}$.
- 4. The Hilbert system T is the extension of the system K with the truth axiom A1. System S4 is the extension of T with A2, the axiom of positive introspection.
 - (a) Formulate the completeness theorem for the system S4.
 - (b) Show that A3, the axiom of negative introspection, is not deducible in S4.
 - (c) Prove that a reflexive and euclidian relation is an equivalence relation.
 - (d) Give a derivation or construct a countermodel:
 - (i) $\vdash_{K^2} K_1 K_2 p \to K_2 K_1 p$
 - (ii) $\vdash_T (K(p \to q) \land p) \to q$