Exam Advanced Logic

Vrije Universiteit Amsterdam, 25 March 2011, 08:45–11:30

This exam consists of four questions. Use of textbook, definition sheets, etc. is not allowed.

- 1. (a) Prove or disprove the validity of $\Box p \to \Diamond \Box \Diamond p$ in reflexive frames.
 - (b) Prove or disprove the validity of $\Box \Diamond p \to p$ in reflexive, transitive frames.
 - (c) Give a poly-modal formula which characterizes the property $R_1 \circ R_2 \subseteq R_2 \circ R_1$, and prove that it does so.
 - (d) Is it possible that a frame property is characterized by non-equivalent formulas? Put differently, is there a class of frames which is modally defined by both φ and ψ , but with $\varphi \leftrightarrow \psi$ not universally valid? Explain your answer.
- **2.** Let $A = \{a_0, a_1, a_2 ...\}$ be a set of atomic programs, and consider the PDL-frame $\mathcal{F} = (\mathbb{N}, \{R_\alpha \mid \alpha \in PROG(A)\})$ with the accessibility relations for the atomic programs given by $R_{a_i} = \{(k, k+i) \mid k \geq 0\}$.
 - (a) Prove that $\mathcal{F} \vDash \langle a_i \rangle [a_j] p \to [a_j] \langle a_i \rangle p$.
 - Consider the model $\mathcal{M} = (\mathcal{F}, \mathcal{V})$ with $\mathcal{V}(p) = \mathbb{N} \setminus \{2011\}$, and the PDL-program $\beta = (a_3 \cup a_2)^*; a_0$.
 - (b) Determine the accessibility relation for β .
 - (c) Is the PDL-formula $[\beta]p$ globally true in \mathcal{M} ? Explain your answer.
 - (d) Is $[\beta]p \to [\beta\beta]p$ valid in \mathcal{F} ? Prove your answer.

(see next page)

3. Let $n \in \mathbb{N}$ and consider the 'looping frame' $\mathcal{L}_n = (W_n, R_n)$ with

$$W_n = \{0, \dots, n-1\}$$

 $R_n = \{(k, k') \mid k' = k+1 \text{ if } k+1 < n \text{ and } k' = 0 \text{ otherwise} \}$

- (a) Give a distinguishing formula for every two distinct looping frames, that is, for all $n, m \in \mathbb{N}$ with $n \neq m$ a formula φ valid in \mathcal{L}_n but not in \mathcal{L}_m .
- (b) Show that for every model \mathcal{M}_n based on \mathcal{L}_n there exists a bisimilar model \mathcal{M}_{2n} based on \mathcal{L}_{2n} .
- (c) For any model \mathcal{N} , does there exist a model \mathcal{N}' bisimilar to \mathcal{N} such that the accessibility relation of \mathcal{N}' is acyclic? Explain your answer.
- 4. Prove or disprove the following epistemic claims. Here K is the basic epistemic logic, and S5 the extension of K with the axioms of veridicality, positive and negative introspection. The system K^+ is the extension of K with the axioms for common knowledge, and the induction axiom $C(p \to Ep) \to (Ep \to Cp)$. Assume that there are $n \ge 2$ agents.
 - (a) $\vdash_{S5} K_1K_2 p \land K_1(p \to q) \to K_1 \neg K_2 q$
 - (b) $\vdash_K K_1K_2 p \to K_1K_1 p$
 - (c) $\vdash_K (K_1 p \lor K_1 q) \land K_1(p \rightarrow q) \rightarrow K_1 q$
 - (d) $\vdash_{K^+} ECp \to CCp$