
Exam Advanced Linear Programming, June 3, 2019

• Switch off your mobile phone, PDA and any other mobile device and put it far away.

• No books or other reading materials are allowed.

• This exam consists of two parts. Write the answers to the different parts on
different pieces of exam paper. Please write down your name on every exam
paper that you hand in.

• This exam consists of 5 pages containing 9 questions in total. Part 1 has 6 questions
and part 2 has 3 questions.

• Answers may be provided in either Dutch or English.

• All your answers should be clearly written down, and you should provide a clear
explanation. Unreadable or unclear answers may be judged as false.

• The maximum score per question is given between brackets before the question.

Good luck, veel succes!

———————————————

Part 1

1 (1 pt.) Formulate Farkas’ Lemma.

Answer.
Theorem. Given m× n matrix A and b ∈ IRm, exactly one of the following two alterna-
tives holds:
(a) ∃ x ≥ 0 : Ax = b;
(b) ∃ y ∈ IRm : yTA ≥ 0 ∧ yT b < 0.

2 (1 pt.) Let A be an m × n matrix and let b ∈ IRm. Complete the statement of the
following lemma and prove it.
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Lemma. Exactly one of the following holds:

(a) there exist x ∈ IRn such that Ax ≤ b;

(b) ...

Answer.

(b) there exist y ∈ Rm such that y ≥ 0, yTA = 0, and yT b < 0.

Proof. We introduce slack s ∈ IRm, s ≥ 0 and we introduce non-negative variables
x+ ≥ 0 and x− ≥ 0 and substitute x = x+−x− such that Ax+−Ax−+Is = b is equivalent
to ∃ x ∈ IRn : Ax ≤ b. Then we apply Farkas’ Lemma to this system to yield that exactly
one of the following two alternatives holds:
(a) ∃ x+ ≥ 0, x− ≥ 0, s ≥ 0 : Ax+ − Ax− + Is = b;
(b) ∃ y ∈ IRm : yTA ≥ 0 ∧ −yTA ≥ 0 ∧ yT I ≥ 0 ∧ yT b < 0, which is equivalent to
∃ y ∈ IRm, y ≤ 0 : yTA = 0∧ yT b < 0.

QED

3 (1 pt.) Given a polytope P = Ax ≥ b and the linear optimization problem

min cTx
s.t. x ∈ P.

Prove that the set of optimal solutions of the problem is again a polytope, whose extreme
points are extreme points of P .

Answer.
Proof. Let v be the optimal value of the LP, then the set of optimal solutions is given by
Q =: {x ∈ P, cTx = v}, which is clearly again a polytope. It remains to be proven that
the extreme points of Q are extreme points of P . Suppose not. Then Q has an extreme
point x such that x = λy + (1 − λ)z for y, z ∈ P and 0 < λ < 1. Since not both y
and z are in Q, suppose y /∈ Q, i.e. cTy > v. This together with cT z ≥ v and cTx = v
yields a contradiction.

QED

4 (0.5 + 0.5 pt.)

(a) Consider the following linear optimization problem

max Z = 3x1 − 2x2 + 4x3 + 4x4

s.t. 2x1 − x2 + 3x3 + 2x4 + x5 = 10
x1 + x2 + x3 + x6 = 8
x1 − x2 + 2x4 + x7 = 4

2



x1, x2, x3, x4, x5, x6, x7 ≥ 0.

In an iteration of the simplex method used for solving this problem we encounter
a basic feasible solution with basic variables x3, x6 en x1 (in that order) with the
corresponding inverse basis matrix given by

B−1 =


1
3

0 −2
3

−1
3

1 −1
3

0 0 1

 .

Determine if this is an optimal solution. If so, compute the solution and its value, if
not perform one improving simplex step.

Answer.
The reduced objective coefficient of x4 is 4 − cTBB−1A4 = 4 − 10

3
= 2

3
. Hence positive

and improvement is possible. The present solution has values (x3, x6, x1)
T = B−1b =

(2
3
, 10

3
, 4)T . x4 enters the basis, we compute B−1A4 = (−2

3
,−4

3
, 2)T . Hence, x1 must

leave the basis. The new basis matrix is computed by replacing the last column of I3
by B−1A4 and turn it into (0, 0, 1)T applying the same row operations to B−1.
Any calculation errors have not been counted.

(b) Consider the simplex method applied to a standard form problem and assume that
the rows of the matrix A are linearly independent. Prove that if in an iteration of the
simplex method the feasible solution is moved by a positive distance then the solution
value must have changed.

Answer.
Proof. Let N denote the set of non-basic indices. Let d be the improving direction of
the simplex iteration. Then we have,

dB = −
∑
i∈N

B−1Aidi,

dj = 1 and di = 0 ∀i ∈ N\{j}, where j ∈ N is such that the reduced cost c̄j of the
variable xj is negative.

Then we can compute the difference in cost between the point before and after the
simplex iteration by:

cT (x+ θ∗d)− cTx = cT θ∗d = θ∗cTd = θ∗
(
cTBdB +

∑
i∈N cidi

)
= θ∗

(∑
i∈N(ci − cTBB−1Ai)di

)
= θ∗

(∑
i∈N c̄idi

)
= θ∗c̄j < 0

The last strict inequality follows because θ∗ > 0 and c̄j < 0.

QED
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5 (1 pt.)
Given a network D = (N ,A). Let s be the only source node of the network and t the

only sink node. Let δ+(U) denote the subset of arcs that have their tail in U and their head
in N \ U and let δ−(U) denote the subset of arcs that have their tail in N \ U and their
head in U . Let f be an s-t flow. Prove that the value of f is equal to the total capacity of
δ+(U) if and only if the following two statements hold:

f(a) = 0 ∀a ∈ δ−(U)
f(a) = c(a) ∀a ∈ δ+(U)

Answer. Proof. (⇐). If f(a) = 0 for all a ∈ δ−(U) then all the flow going through the
cut U from the s-side does not return to this side, hence flows into t. If

∑
a∈δ+(U) f(a) =∑

a∈δ+(U) c(a) then this flow is equal to the cut capacity.

(⇒). If the value of f is equal to the total capacity of δ+(U) then we know it is a maximum
flow, since for any flow and any cut U we have that the value of the flow is at most the size
of the cut. The rest of the proof can follow the same arguments as in the proof of the max
flow min cut theorem, for which I refer to the lecture notes.

QED

6 (1 pt)

Flow Decomposition Theorem. Given a network D = (N ,A). Let s be the only source
node of the network and t the only sink node. Let f be any feasible s-t flow. There exists
a set of paths P1, . . . , PK from s to t in the network for some K and positive scalars βk,
k = 1, . . . , K, such that for every arc a ∈ A we have f(a) =

∑
Pk3a βk. Moreover, if f is

an integer flow vector, then for k = 1, . . . , K, βk can be chosen integer.

Prove the Flow Decomposition Theorem.

Answer. Proof. The proof is similar to the proof of the flow decomposition theorem in
the book and the lecture notes. Neglect the arcs in the network that do not carry any flow.
Start in s and follow a single path, in each step selecting an arc with positive flow, until t is
reached. Denote this path P1, and let β1 =: mina∈P1 f(a). Then reduce the flow on all the
arcs of P1 by β1. Clearly the remaining flow is still a feasible flow but the network of arcs
with positive flow has lost at least one edge. Continue until the 0-flow remains.

QED

Just for your interest: In a way the above theorem tells us that we can find the maximum
s-t flow in a network by just augmenting on s-t paths of the network. Moreover to find the
decomposition with a minimum number of paths is an NP-hard problem.

4



Part 2

1 (0.25 pt + 0.5 pt + 0.75 pt) We are given an undirected graph G = (V,E), with nodes V
and edges E. Node i has a positive weight wi. An independent set I is a subset of V such
that no two edges in I are connected by an edge, i.e., each edge has at most one endpoint
in I. We want to find an independent set with maximum weight.

(a) Give an integer linear programming formulation of this problem. Clearly describe the
decision variables, objective function, and constraints.
Answer:
Define for each node i ∈ V a binary variable xi which equals 1 if i is in the independent
set and 0 otherwise. We obtain the following formulation:

max
∑
i∈V

wixi

subject to
xi + xj ≤ 1 ∀(i,j)∈E
xi ∈ {0, 1} ∀i∈V

(b) A clique C is a subset of V such that every pair of nodes in C is connected by an edge.
Define a valid inequality for the independent set polyhedron based on a clique C.
Answer: ∑

i∈C

xi ≤ 1.

(c) A clique C is called maximal if it is impossible to obtain a clique by adding a node C.
Prove that for maximal cliques, the inequalities from part (b) are facet inducing. You
may assume that the independent set polyhedron is full-dimensional.
Answer:
Let n be the number of nodes and let P be the independent set polyhedron, i.e. the
convex hull of the set of integer solutions to the independent set problem. Let C be a
maximal clique. We have to prove that {x ∈ P |

∑
i∈C xi = 1} has dimension n− 1, i.e.

there are n affinely independent vectors in {x ∈ P |
∑

i∈C xi = 1}. These vectors are:

• The unit vectors ȳi = ei for i ∈ C.

• Let i /∈ C. Since C is a maximal clique there is at least one j ∈ C such that
(i, j) /∈ E. Now ȳi = ei + ej is a feasible solution.

It is easy to see that the only solution of
∑

j∈V λj ȳj = 0 and
∑

j∈V λj ȳj = 0 is λj = 0
for all j.

�
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2 (0.5 pt. + 0.75 pt.) We consider the following vehicle routing problem. There are m
vehicles located at a central depot. The vehicles have to transport goods to n customers.
The distance from customer i to customer j equals dij. Observe that it is possible that
dij 6= dji, e.g. because of one-way streets in a city. However, we assume that the triangle
inequality holds for the distances. Moreover, the distance from the depot to customer j
equals d0j and from customer j to the depot dj0. We assume that the capacity of the
vehicles is not a limiting factor, so you do not have to take it into account. The question is
to find routes for the m vehicles such that the total driving distance is minimal.

(a) The vehicle routing problem can be formulated by using vehicle plans; a vehicle plan
describes a route along a subset of the customers driven by one vehicle. Give an integer
linear programming formulation for this problem based on routes.
Answer:
Let R be collection of ordered subsets of {1, . . . , n}. Each r ∈ R defines a vehicle plan
(route). For a given route r we define a binary decision variable xr which equals 1 if
route r is selected and 0 otherwise. Let dr be the total length of the route. Moreover
we define the indicator ajr equal to 1 if customer j is in route r and 0 otherwise. Now
we obtain the following formulation.

min
∑
r∈R

drxr

subject to ∑
r∈R

ajrxr = 1 ∀j (1)∑
r∈R

xr = m (2)

xr ∈ {0, 1} ∀r∈R (3)

The first constraint ensures that each customers is visited exactly once, and the second
constraint enforces that we select m routes.

(b) Describe how the LP-relaxation of this formulation can be solved by column genera-
tion. Your description should include a formulation of the pricing problem. You do
not need to describe how to solve the pricing problem.
Answer:

1. Start with a restricted master LP which contains a small subset of R∗ of vehicle
plans. R∗ can for examplebe obtained by taking as route 1 customers 1, . . . , b n

m
c, as

route 2 customers b n
m
c+1, . . . , 2b n

m
c etc. (make sure that route m includes customer

n).

2. Solve the restricted master LP.
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3. Solve the pricing problem to find out if there are vehicle plans outside the restricted
master problem with negative reduced cost. If yes, add the variable corresponding
to this vehicle plan to the restricted master problem and go to step 2. If no, the LP
has been solved to optimality.

In the pricing problem we have to minimize the reduced cost. Suppose we have solved
the restricted master problem. Let πj (j = 1, . . . , n) be the dual variables for the first
constraints and µ the dual variable f the second constraints. The reduced cost of route
r are ∑

(i,j)∈rop

dij −
∑
j∈r

πj − µ,

where rop denotes the sts of pairs of customers that are visited consecutively in route
r. This can be rewritten as: ∑

(i,j)∈rop

(dij − πi)− µ.

So we have to solve a variant of the travelling salesmen problem in which we are allowed
to visit only a subset of the customers. Note that distances may be negative.
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3 (0.5 pt. + 0.25 pt. + 0.5 pt.) The company Fiber & Co wants to construct an
optical fibre network in a medium-sized city. Finding the best network design boils down
to the problem Minimum Spanning Tree with Unrealiable Edges. We are given an
undirected graph G = (V,E). Each edge e ∈ E has cost ce. A tree is a connected subgraph
without cycles. A tree is a spanning tree of a graph if it contains all nodes. We want to find
a spanning tree with minimum cost. However, there is a subset W of the edges, which are
unreliable because they break down regularly. For this reason, we want to select at most q
edges from the set W . We assume that |W | > q.

(a) Give an integer linear programming formulation for this problem. Clearly describe the
decision variables, objective, and constraints.
Answer:
Let n = |V |. Define for each edge e ∈ E a binary variable xe which equals 1 if e is in
the spanning tree and 0 otherwise. We obtain the following formulation:

min
∑
e∈E

cexe

subject to ∑
e∈E

xe = n− 1 (4)∑
e⊂S

xe ≤ |S| − 1 ∀S⊂V,S 6=∅,N (5)∑
e∈W

xe ≤ q (6)

xe ∈ {0, 1} ∀e∈E (7)

(b) Write the Lagrangean relaxation subproblem that you obtain by dualizing the con-
straint on the maximum number of unreliable edges. If you did not find an answer
in part (a) you can use the formulation min{cx|Ax ≤ b, dx ≤ f, x ∈ {0, 1}n}, where
dx ≤ f models the maximum number of unreliable edges.
Answer:
Let λ > 0.

min
∑
e∈E

cexe − λ(q −
∑
e∈W

xe)

subject to ∑
e∈E

xe = n− 1 (8)∑
e⊂S

xe ≤ |S| − 1 ∀S⊂V,S 6=∅,N (9)

xe ∈ {0, 1} ∀e∈E (10)
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(c) Let ZIP be the optimal value of the original ILP formulation and Z(λ) be the optimal
value of the Lagrangean subproblem with multiplier λ. Do we have Z(λ) ≤ ZIP or
Z(λ) ≥ ZIP ? Prove your answer.
Answer:
We have Z(λ) ≤ ZIP . Let x∗ be the optimal solution of the IP. Since x∗ is feasible we
have

∑
e∈W x∗e leqq. Consequently Zλ ≤

∑
e∈E cex

∗
e − λ(q −

∑
e∈W x∗e) ≤

∑
e∈E cex

∗
e =

ZIP .

�
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