
Final exam Advanced Linear Programming, May 27, 13.00-16.00

• Switch off your mobile phone, PDA and any other mobile device and put it far away.

• No books or other reading materials are allowed.

• This exam consists of two parts. Write the answers to the different parts on
different pieces of exam paper. Please write down your name on every exam
paper that you hand in.

• This exam consists of 4 pages containing 8 questions. Part 1 has 6 questions and
part 2 has 2 questions.

• Answers may be provided in either Dutch or English.

• All your answers should be clearly written down and provide a clear explanation.
Unreadable or unclear answers may be judged as false.

• The maximum score per question is given between brackets before the question.

Good luck, veel succes !
———————————————

Part 1

(1) (1 pt.) Formulate Farkas’ Lemma.

Answer.
Theorem. Given m× n matrix A and b ∈ IRm, exactly one of the following two alterna-
tives holds:
a) ∃ x ≥ 0 : Ax = b;
b) ∃ y ∈ IRm : yTA ≥ 0 ∧ yT b < 0.

(2) (1 pt.) Let A be an m × n matrix, let C be a m × k matrix and let b ∈ IRm. Prove
that exactly one of the following holds:

(a) there exist x ∈ IRn and u ∈ IRk such that Ax+Cu ≤ b and x ≥ 0;

(b) there exist y ∈ IRm such that y ≥ 0, yTA ≥ 0, yTC = 0 and yT b < 0.

Answer. Proof. To turn (a) in the form used in Farkas Lemma as in Exercise 1, we
introduce slack variables s ≥ 0 to induce equality between left- and right-hand side, and
we introduce u1 ≥ 0 and u2 ≥ 0 with u1, u2 ∈ IRk allowing us to express any u ∈ IRk as
u = u1−u2. This yields the equivalent expression for (a)
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(a) there exist x ∈ IRn and u ∈ IRk such that Ax+Cu1−Cu2+Is = b and x, u1, u2, s ≥ 0;
According to Farkas Lemma the corresponding statement for (b) should then be

(b) there exist y ∈ IRm such that yTA ≥ 0, yTC ≥ 0, yT (−C) ≥ 0, yT I ≥ 0 and yT b < 0,

which is equivalent to
(b) there exist y ∈ IRm such that yTA ≥ 0, yTC = 0, y ≥ 0 and yT b < 0.

QED

Also correct proofs from scratch have been awarded full points.

(3) (1 pt.)
Give the definition of a vertex of a polyhedron. Determine all the vertices of

{x ∈ IRn | −1 ≤ xi ≤ 1, i = 1, . . . , n}.

Prove correctness of your answer. You may use any theorems you know as long as you
formulate them correctly.

Answer. A vertex of a polytope is the only intersection point of the polytope with a
hyperplane. A theorem states equivalence of stating that a point is a vertex, a point is
a extreme point and a point is a basic feasible solution (bfs). The latter two are easier
here for proofs. Define

V = {(x1, . . . , xn) ∈ P | xi = +1 or xi = −1, i = 1, . . . , n}.

We need to proof that these 2n points are indeed all the vertices of P .

A bfs is a point in which n linearly independent constraints defining P hold with equality.
P has 2n constraints. Clearly, the constraints xi ≥ −1 and xi ≤ 1 cannot both be met
with equality at the same time. Hence, writing the inequality xi ≥ −1 as −eTi x ≤ −1 and
xi ≤ 1 as eTi x ≤ 1, with ei the i-th unit vector, i = 1, . . . , n, it is clear that

x ∈ V if and only if x is a bfs (hence a vertex).

QED
Also correct proofs using the definition of extreme point, showing both that x ∈ V is an
extreme point and that every extreme point is in V have been awarded full points.

(4) (1 pt.) Hint: part (b) of this exercise is easier than part (a) and can be made without
having part (a) solved correctly.

Given is the following theorem.
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Theorem 0.1 Let a1, . . . , am be some vectors in IRn, with m > n + 1. Suppose that the
system of inequalities aTi x ≥ bi, i = 1, . . . , m, does not have any solutions . Then we
can choose n + 1 of these inequalities, so that the resulting system of inequalities has no
solutions.

(a) Use this theorem to prove Helly’s Theorem.

Theorem 0.2 Helly’s Theorem. Let F be a finite family of polyhedra in IRn such
that every n + 1 polyhedra in F have a point in common. Then all polyhedra in F
have a point in common.

Answer. Proof by contradiction. Suppose that not all polyhedra in F have a point
in common. Think of the inequalities of all polyhedra together as one big system
of inequalities. So there is no point that satisfies all of these inequalities. Then the
Theorem says that there must be a set of n + 1 of them that is not satisfied by any
point. Take such a subset of n + 1 inequalities. They belong to at most n + 1 poly-
hedra of F . Hence the inequalities of these polyhedra cannot all be simultaneously
satisfied. But any set of n + 1 polyhedra, hence any set of at most n + 1 polyhedra
of Fhas a point in common. Contradiction.

(b) For n = 2, Helly’s Theorem asserts that the polyhedra P1, P2, . . . , PK , (K ≥ 3) in
the plane have a point in common if and only if every three of them have a point in
common. Is the result still true with ”three” replaced by ”two”?

Answer. The answer is NO. It is sufficient to draw an example here, or otherwise
define 3 sets that pairwise intersect but do not have a point in the intersection of all
three sets.

(5) (1 pt.) Consider an uncapacitated network flow problem

min cTf
s.t. Af = b

f ≥ 0

and assume that there exists at least one feasible solution. We wish to show that the optimal
cost is −∞ if and only if there exists a negative cost directed cycle.

Provide a proof based on the network simplex method.

Answer. (⇐). If there exists a negative directed cost cycle then there is a basic cycle C
with hC a vector with all non-negative entries, AhC = 0, with cThC < 0. Clearly Af = b

3



implies Af +λAhC = b, for all λ. Since there exists no upper bound on the edge capacities
we may choose λ arbitrarily large, yielding a infinite cost decrease of λcThC .

(⇒). If there is no directed negative cost cycle, then in the network simplex algorithm,
in every iteration the negative cost cycle found must have a backward arc. This bounds
the increase on the augmentation in each iterations. Since the network simplex algorithm
terminates in a finite number of steps, the cost will not become −∞.

(6) (1 pt.)

(a) Consider the network given in the figure below. The number at an arc represents the
capacity of that arc.
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Determine a maximum s–t flow in this network. Show clearly how you compute this
cut. Give a short argument why your answer is correct.

(b) Let f be a s-t flow and δ+(U) is a s-t cut in any directed graph D = (N ,A), with
capacity function c : A → IR+, where δ+(U) is used to denote the subset of arcs that
have their tail in U and their head in N \ U . δ−(U) is used to denote the subset of
arcs that have their tail in N \ U and their head in U . The value of f is the total
amount of flow on the arcs with s as their tail, which is equal to the total amount of
flow on the arcs with t as their head. Prove that the value of f is equal to the total
capacity of δ+(U) if and only if the following two statements hold:

f(a) = 0 ∀a ∈ δ−(U)
f(a) = c(a) ∀a ∈ δ+(U)

Answer. (⇐). If f(a) = 0 for all a ∈ δ−(U) then all the flow going through the cut U from
the s-side does not return to this side, hence flows into t. If

∑
a∈δ+(U) f(a) =

∑
a∈δ+(U) c(a)

then this flow is equal to the cut capacity.
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(⇒). If the value of f is equal to the total capacity of δ+(U) then we know it is a maximum
flow, since for any flow and any cut U we have that the value of the flow is at most the size
of the cut. The rest of the proof can follow the same arguments as in the proof of the max
flow min cut theorem (I don’t write this out here).

Part 2

(7)(2 points) We consider the energy constrained max-flow problem. We are given a di-
rected graph (V,A), where V is the set of nodes and A is the set of arcs. There is a source
node s ∈ V and a sink t ∈ V . Each node i has a battery with capacity Ei. Sending flow on
edge (i, j) requires energy from the battery at node i, which amounts eij per unit flow. The
objective is to find the maximal flow s to t, where the flow is required to be integral.

(a) Give an integer linear programming formulation for this problem with a polynomial
number of variables (do not use the formulation from part (c)).
Let the binary decision variable xij denote the flow on arc (i, j).

max
∑

(i,t)∈A xij

s.t.
∑

i:(i,j)∈A
xij =

∑

k:(j,k)∈A
xjk ∀j ∈ V \ {s, t}

∑

j:(i,j)∈A
eijxij ≤ Ei

xij ∈ IN ∪ {0} ∀(i, j) ∈ A

(b) Show that if we omit the energy contraints, the constraint matrix is totally unimodular.
When we remove the energy constraint the constraint matrix is given by the following
constraints: ∑

i:(i,j)∈A
xij −

∑

k:(j,k)∈A
xjk = 0 ∀j ∈ V \ {s, t}

Proposition 3.2 form the note on Totally Unimodular matrices states that a matrix
is TU if i) aij ∈ −1, 0, 1 for all i, j, ii) Each column contains at mmost two non-zero
coefficients, and iii) there is a partition (M1,M2) of the set of rows such each columns
containing two-non-zero coefficients satisfies

∑
i∈M1

aij −∑
i∈M2

aij = 0. It is clear that
i) is true. A column of a variable xsj has one 1 in row j, column xjt has one −1 in
row j. Finally column xij with i, j ∈ V \ {s, t} has a 1 in row j and −1 in row i. This
implies ii). Moreover, for each column with two non-zero’s we have that teh sum of
the elements is 0, so iii) holds with M1 is the set of all rows.
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(c) It is known that a network flow can be decomposed into a number of s − t paths. An
alternative way to formulate the problem is by using these paths. Give an integer linear
programming formulation for the problem of part (a) based on paths.
Let q be a path from s to t and define parameter Pqij = 1 if arc (i, j) is on path q and
0 otherwise. Let Q be the set of all paths from s to t. We use binary decision variable
xq which equals 1 if we select path q and 0 otherwise. We obtain the following integer
linear programming formulation:

max
∑

q∈Q xq

s.t.
∑

i∈N
Pqijeijxq ≤ Ei ∀i∈N

xq integer ∀q∈Q

(d) Describe how the LP-relaxation of this formulation can be solved by column generation.
Your description should include a formulation of the pricing problem. Describe how to
solve the pricing problem.
The problem is solved as follows:

Step 1. Solve the restricted master problem (RMP), i.e. solve the LP-relaxation for a
restricted set of variables Q′.

Step 2. Solve the pricing problem, i.e. maximize reduced cost.

Step 3. If the maximum reduced cost is 0 or negative the LP-relaxation has been solved
to optimality. Otherwise, i.e. a variable xq with positive reduced cost is found,
add q to Q′ and go to Step 1.

Solving the pricing problem
Suppose we have solved the RMP. Let pii be the value of dual variable for the energy
constraint on node i in the RMP. The reduced cost of variable xq equals

1− ∑

(i,j)∈A
Pqijeijπi.

The column is defined by the parameters Pqij which define the set of arcs that are on
the path q. We can rewrite the reduced cost as

1− ∑

(i,j)∈q
eijπi

. Maximizing the reduced cost, amounts to minimizing
∑

(i,j)∈q eijπi. Since q has to
be a path from s to t the pricing problem can be solved by solving a shortest path
problem, where the cost on the arcs are eijπi. Since, by definition pii ≥ 0 this can be
solved by Dijksta’s algorithm.
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(8) (2 points) We consider the minimum spanning tree problem. We are given a graph
(V,E), where V is the set of n nodes and E is the set of edges. Edge e ∈ E has cost ce.
The question is to find a spanning tree with minimal cost, i.e. a subgraph containing all
nodes from V which is a tree (graph without cycles).

(a) Give an integer linear programming formulation for this problem in which you include
subtour elimination constraints.

(b) Give an integer linear programming formulation for this problem in which you include
constraints on cutsets, where for S ⊆ V cutset δ(S) is defined as {(i, j) ∈ E|i ∈ S, j /∈
S}.

(c) Let Psub and Pcut be the feasible regions of the LP-relaxation of the formulations from
part (a) and (b), respectively. Prove that

Psub ⊂ Pcut

and that this is a real inclusion, i.e. the sets are not equal.

7


