
Solutions for Preparation Exam
Advanced Econometrics

Master Econometrics and Operations Research
School of Business and Economics

Exam: Advanced Econometrics (4.1)
Code: E EORM AECTR

Examinator: -
Co-reader: -

Date: -
Time: -
Duration: 2 hours and 45 minutes

Calculator: Not Allowed
Graphical calculator: Not Allowed
Scrap paper: Allowed

Number of questions: 3

Type of questions: Multiple Choice and Open
Answer in: English

Credit score: 100 credits counts for a 10
Grades: -
Inspection: -
Number of pages: 7, including front page

• Give justifications for your answers unless stated otherwise.

• Be complete and explicit, but also clear and concise in your statements.

• If you think that further information is needed to answer a question, or that the
question is ill-posed, then explain your reasoning

• The questions should be handed back at the end of the exam. Do not take it home.

Good luck!

1

lOMoARcPSD|4424963



Question 1 [40 points] - Multiple Choice

For each of the following multiple choice questions, please indicate which statement is
correct by selecting an option (a), (b), (c) or (d). Only one option is correct.

Note: You get 4 points for each correct answer and -1 point for every incorrect answer.

Note: Please write your answers on your answer sheet (so not on this sheet). Clearly
indicate your choice. No justifications are needed.

1. Consider the following Asymmetric GARCH model

xt = σtεt for every t ∈ Z where {εt}t∈Z ∼ NID(0, 1),

where σ2
t = ω + αx2

t−1 + δxt−1 + βσ2
t−1 for every t ∈ Z.

Which of the following statements is correct?

(a) A positive parameter δ > 0 can be used to account for the ‘Leverage Effect’. If
δ > 0, then past negative returns xt−1 < 0 tend to have a smaller effect on the
conditional volatility σ2

t than positive returns xt−1 > 0 of equal magnitude.

(b) A negative parameter δ < 0 can be used to account for the ‘Leverage Effect’.
If δ < 0, then past negative returns xt−1 < 0 tend to have a smaller effect on
the conditional volatility σ2

t than positive returns xt−1 > 0 of equal magnitude.

(c) A positive parameter δ > 0 can be used to account for the ‘Leverage Effect’. If
δ > 0, then past negative returns xt−1 < 0 tend to have a larger effect on the
conditional volatility σ2

t than positive returns xt−1 > 0 of equal magnitude.

(d) A negative parameter δ < 0 can be used to account for the ‘Leverage Effect’.
If δ < 0, then past negative returns xt−1 < 0 tend to have a larger effect on the
conditional volatility σ2

t than positive returns xt−1 > 0 of equal magnitude.

2. Let {xt}t∈Z be a strictly stationary and ergodic sequence with two bounded moments
E|xt|2 < ∞. Let yt = 5x2

t and consider the sample average 1
T

∑T
t=1 yt.

Which of the following statements is correct?

(a) The sample average converges to the expectation E(xt) by application of a law
of large numbers.

(b) The sample average may or may not converge to the expectation E(xt).

(c) The sample average converges to the expectation E(5x2
t ) by application of a

law of large numbers.

(d) The sample average does not converge to the expectation E(5x2
t ).
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3. Let {xt}t∈Z be a strictly stationary and ergodic sequence of stock returns with four
bounded moments E|xt|4 < ∞. Consider the following GARCH filtering equation
for the conditional volatility with θ := (ω,α, β) = (0.1, 0.15, 0.95),

σ2
t = 0.1 + 0.15x2

t−1 + 0.95σ2
t−1 for every t ∈ Z.

Which of the following statements is correct?

(a) The filtered volatility {σ̂2
t (θ, σ̂

2
1)}t∈N is invertible at θ and asymptotically sta-

tionary.

(b) The filtered volatility {σ̂2
t (θ, σ̂

2
1)}t∈N is not invertible at θ and not asymptoti-

cally stationary.

(c) The filtered volatility {σ̂2
t (θ, σ̂

2
1)}t∈N is invertible at θ but not asymptotically

stationary.

(d) The filtered volatility {σ̂2
t (θ, σ̂

2
1)}t∈N is not invertible at θ but it is asymptoti-

cally stationary.

4. Let θ0 be the unique maximizer of the limit deterministic criterion Q∞ : Θ → R.

Which of the following statements is correct?

(a) θ0 is identifiably unique.

(b) θ0 may or may not be identifiably unique.

(c) θ0 is identifiably unique if the parameter space Θ is compact.

(d) θ0 is identifiably unique if the criterion converges uniformly.

5. Consider the following GARCH-in-mean model

xt = µ+ λσt + σtεt for every t ∈ Z where {εt}t∈Z ∼ NID(0, 1),

where σ2
t = ω + α(xt−1 − µ− λσt−1)

2 + βσ2
t−1 for every t ∈ Z,

where ω ≥ a > 0, α > 0 and β > 0. Say you want to estimate the parameter vector
θ = (µ,λ,ω,α, β) using Maximum Likelihood (ML).

What is the correct expression of the log likelihood function that you will use for
your estimation?

(a)
∑T

t=2 −
1
2 log(2π)−

1
2 log(σ̂

2
t (θ, σ̂

2
1))−

(xt−µ)2

2σ̂2
t
(θ,σ̂2

1
)
.

(b)
∑T

t=2 −
1
2 log(2π)−

1
2 log(σ̂

2
t (θ, σ̂

2
1))−

(xt−µ−λσ̂2
t
(θ,σ̂2

1
))2

2σ̂2
t
(θ,σ̂2

1
)

.

(c)
∑T

t=2 −
1
2 log(2π)−

1
2 log(σ̂

2
t (θ, σ̂

2
1))−

(xt−µ−λσ̂t(θ,σ̂2
1
))2

2σ̂2
t
(θ,σ̂2

1
)

.

(d) None of the other answers are correct.
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6. Consider the regression yt = f(xt) + εt.

Select the correct statement:

a. xt is endogenous if xt and εt are independent random variables.

b. yt is endogenous if yt is independent of xt.

c. The problem of omitted variable bias can result in xt being endogenous, in which
case xt is dependent on εt.

d. The problem of simultaneity can lead to xt being exogenous, in which case xt is
dependent on εt.

7. Let {xt}t∈Z be a sequence of independent random variables uniformly distributed
on the interval [−1, 1], i.e. {xt}t∈Z ∼ UID([−1, 1]).

Which of the following statements is correct?

(a) {xt}t∈Z is iid, white noise, weakly stationary, and strictly stationary.

(b) {xt}t∈Z is iid, weakly stationary, and strictly stationary but not white noise.

(c) {xt}t∈Z is strictly stationary but not white noise.

(d) {xt}t∈Z is iid but not strictly stationary.

8. Let {xt}t∈Z be a strictly stationary and ergodic sequence with four bounded moments
E|xt|4 < ∞. Define θ := (ω,α, β) and consider the following filtering equation for
the conditional mean of {xt}t∈Z,

µ̂t+1 = ω + α(xt − µ̂t) + βµ̂t for every t ∈ N.

Which of the following statements is correct?

(a) The filtered conditional mean {µ̂t(θ, µ̂1)}t∈N is invertible at θ ∈ Θ, if |α| < 1.

(b) The filtered conditional mean {µ̂t(θ, µ̂1)}t∈N is invertible at θ ∈ Θ, if |β| < 1,
but not asymptotically stationary.

(c) The filtered conditional mean {µ̂t(θ, µ̂1)}t∈N is invertible at θ ∈ Θ and asymp-
totically stationary if |β| < 1.

(d) The filtered conditional mean {µ̂t(θ, µ̂1)}t∈N is invertible at θ ∈ Θ and asymp-
totically stationary if |β − α| < 1.
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9. Consider two competing models, A and B. Suppose you have at your disposal an
estimation sample and an independent test sample.

(a) Under appropriate regularity conditions, the Hausman test statistic can be
used to test if model A predicts better than model B.

(b) Under appropriate regularity conditions, the Diebold-Mariano test statistic can
be used to test if model A nests model B.

(c) Under appropriate regularity conditions, the Hausman test statistic can be
used to test if model A is correctly specified using two different estimators for
the parameters of model A.

(d) Under appropriate regularity conditions, the Diebold-Mariano test statistic can
be used to test if model A is correctly specified using two different estimators
for the parameters of model A.

10. Consider the following random coefficient autoregressive model,

xt+1 = βtxt + εt

where {βt}t∈Z and {εt}t∈Z are iid random variables with two bounded moments.

Which of the following statements is correct?

(a) If E(βt) < 1 ∀ t then {xt}t∈Z is strictly stationary and ergodic.

(b) E|βt| < 1 is a necessary condition for {xt}t∈Z to be stationary and ergodic.

(c) E log |βt| < 1 is a sufficient condition for {xt}t∈Z to be stationary and ergodic.

(d) None of the other statements is correct.

ANSWER KEY: 1. d, 2. c, 3. a, 4. b, 5. c, 6. c, 7. a, 8. d, 9. c, 10. d
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Question 2 [30 points]

In economics and finance, time-series may sometimes exhibit time-varying conditional
mean and volatility.

Let {xt}t∈Z be generated according to

xt = µt + σtεt for every t ∈ Z ,

where {εt}t∈Z is a sequence of Gaussian iid random variables {εt}t∈Z ∼ NID(0, 1). Suppose
that the time-varying conditional mean {µt}t∈Z satisfies

µt = 0.2
(

xt−1 − µt−1

)

+ 0.7µt−1 for every t ∈ Z.

Furthermore, let the time-varying volatility {σt}t∈Z be determined by an exogenous se-
quence {zt}t∈Z, according to

σt =
(

1 + tanh(zt)
)

for every t ∈ Z.

Finally, let {zt}t∈Z be generated by the following random coefficient autoregressive model

zt+1 = ρtzt + vt for every t ∈ Z ,

where {ρt}t∈Z is a sequence of iid random variables with uniform distribution {ρt}t∈Z ∼
UID(0 , 1.5) taking values in the interval [0 , 1.5], and {vt}t∈Z is a sequence of Student-t
iid random variables with two degrees of freedom {vt}t∈Z ∼ TID(2).

Note: the acronym iid stands for independent identically distributed.
Note: the function 1 + tanh(·) is uniformly bounded between 0 and 2.
Note: the random variable vt satisfies E|vt|n < ∞ for 0 < n < 2.

(a) (13pts) Can you show that {σt}t∈Z is strictly stationary and ergodic?

Answer: Since the tanh function is continuous, it is also measurable with respect
to the Borel sigma-algebra. As a result, by Krengel’s Theorem, we can conclude
that {σt}t∈Z is an SE sequence as long as {zt}t∈Z is itself SE.

Since {zt}t∈Z is generated by a Markov dynamical system,

zt+1 = ρtzt + vt for every t ∈ Z ,

we can show that {zt}t∈Z is SE by application of Bourgerol’s Theorem.

• Condition A1 of Bougerol’s Theorem is satisfied since the innovation vector
{(ρt, vt)}t∈Z is iid, and hence, it is trivially SE.
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• Condition A2 of Bougerol’s Theorem is satisfied since, for any initialization z1,
we have

E log+ |ρtz1 + vt| ≤ E|ρtz1 + vt| (because log+ |x| ≤ |x| ∀ x)

≤ |z1|E|ρt|+ E|vt| (by sub-additivity of the absolute value)

≤ |z1|1.5 + E|vt| (since {ρt}t∈Z ∼ UID(0 , 1.5) and hence |ρt| < 1.5)

< ∞ (because z1 ∈ R, and {vt}t∈Z ∼ TID(2) and hence E|vt|n < ∞ for any n < 2)

• Condition A3 of Bougerol’s Theorem (the contraction condition) is satisfied
since ∂(ρtzt + vt)/∂zt = ρt and hence

E log sup
z

|ρt| = E log |ρt|

≤ logE|ρt| (Jensen’s inequality)

= logEρt (ρt is always positive because {ρt}t∈Z ∼ UID(0 , 1.5))

= log 0.75 < 0. ({ρt}t∈Z ∼ UID(0 , 1.5) implies that Eρt = 0.75)

We thus conclude by Bougerol’s Theorem that the process {zt(z1)}t∈N initialized at
any point z1 converges to a limit SE sequence {zt}t∈Z. Since Bougerol’s conditions
hold for any initialization z1 ∈ R, we can conclude that the sequence starting in the
infinite past {zt}t∈Z is indeed SE.

Finally, as mentioned above, since the process starting in the infinite past {zt}t∈Z
is SE, we conclude that {σt}t∈Z is also SE.

(b) (17pts) Can you show that E|xt|2 < ∞? Is {xt}t∈Z weakly stationary?

Answer: From the previous question (a), we already know that {σt}t∈Z is SE.
Furthermore, since the tanh function is uniformly bounded, we know that σt is also
uniformly bounded

|σt| = |1 + tanh(zt)| ≤ sup
z

|1 + tanh(z)| ≤ 2.

We will now show that {µt}t∈Z is SE and has two bounded moments by application
of the Uniform Contraction Theorem with n = 2. First, we note that by substituting
xt−1 for µt−1 + σt−1εt−1 (observation equation) in the updating equation for µt, we
find that {µt}t∈Z is generated according to

µt = 0.2σt−1εt−1 + 0.7µt−1 for every t ∈ Z.

Since this is a Markov dynamical system, we can simply verify if the conditions of
the Uniform Contraction Theorem hold for n = 2

• Condition A1 of the Uniform Contraction Theorem holds because the inno-
vations vector {(σt−1, εt−1)}t∈Z is clearly exogenous and SE. The SE nature
of {σt−1)}t∈Z was shown in the previous question (a), and the SE nature of
{εt−1}t∈Z follows immediately since this sequence is iid.
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• Condition A2 of the Uniform Contraction Theorem holds for any initialization
µ1 ∈ R since

E|0.2σt−1εt−1 + 0.7µ1|2 ≤ 0.22cE|σt−1εt−1|2 + 0.72cE|µ1|2 (by the cn-inequality)

≤ 0.04 c E|σt−1|2|E|εt−1|2 + 0.49 c |µ1|2 (because σt−1 and εt−1 are independent)

≤ 0.04 c 22 E|εt−1|2 + 0.49 c |µ1|2 (because σt is uniformly bounded σt < 2 a.s.)

< ∞ (because c ∈ R, µ1 ∈ R, and {εt}t∈Z ∼ NID(0, 1) and hence E|εt−1|n < ∞∀n)

• Condition A3 of the Uniform Contraction Theorem (the contraction condition)
is satisfied for n = 2 since

sup
µ,σ,ε

∣

∣

∣

∂(0.2σt−1εt−1 + 0.7µ)

∂µ

∣

∣

∣
= sup

µ
|0.7| = 0.7 < 1.

We thus conclude by application the Uniform Contraction Theorem, with n = 2,
that the process {µt(µ1)}t∈N initialized at time t = 1 with some value µ1 converges
e.a.s. to a unique limit process {µt}t∈Z which is SE and has two bounded moments
E|µt|2 < ∞. Since, the conditions of the Uniform Contraction Theorem were shown
to hold for any initialization µ1 ∈ R we further conclude that the process {µt}t∈Z
initialized in the infinite past is indeed SE with two bounded moments.

Finally, we turn to the process {xt}t∈Z. First, we note that {xt}t∈Z is SE by Kren-
gel’s Theorem since it is generated as a continuous function (and hence measurable
w.r.t. the Borel sigma-algebra) of the independent SE sequences {µt}t∈Z, {σt}t∈Z
and {εt}t∈Z. Furthermore, we note that any element xt of the sequence {xt}t∈Z has
two bounded moments since

E|xt|2 ≤ E|µt + σtεt|2

≤ cE|µt|2 + cE|σtεt|2 (by the cn-inequality)

≤ cE|µt|2 + cE|σt|2E|εt|2 (because σt and εt are independent)

≤ cE|µt|2 + c4E|εt|2 (because σt ≤ 2 a.s.)

< ∞ (because c ∈ R, E|µt|2 < ∞ and {εt}t∈Z ∼ NID(0, 1) and hence E|εt|n < ∞∀n )

Since {xt}t∈Z is an SE sequence with two bounded moments E|xt|2 < ∞, we can
conclude that {xt}t∈Z is weakly stationary.
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Question 3 [30 points]

Some econometricians claim that the temporal dependence in the growth rate of the Gross
Domestic Product (GDP) is stronger during economic recession periods and weaker during
expansions.

Let the sample of GDP growth rates {xt}Tt=1 at your disposal be a subset of the realized
path of a strictly stationary and ergodic time-series {xt}t∈Z with bounded moments of
fourth order E|xt|4 < ∞. Consider the Gaussian logistic Self Excited Smooth Transition
Autoregressive (SESTAR) model

xt = α + g(xt−1;θ)xt−1 + εt for every t ∈ Z where {εt}t∈Z ∼ NID(0, σ2
ε)

and g(xt−1;θ) :=
γ

1 + exp(βxt−1)
for every t ∈ Z.

Suppose that the parameters θ = (α, γ, β, σ2
ε) of the model are estimated by maximum

likelihood (ML) on a compact parameter space Θ with σ2
ε > 0. Note also that g(x;θ) is

uniformly bounded since |g(x;θ)| ≤ |γ| for every (x,θ). Suppose that the ML estimator
θ̂T is consistent for a parameter θ0 in the interior of Θ.

(a) (13pts) Can you derive the limit distribution of the derivative of the log likelihood
function evaluated at θ0 (multiplied by

√
T )?

Answer: Note first that, according to the SESTAR model, the distribution of xt

conditional on xt−1 is given by

xt|xt−1 ∼ N
(

α + g(xt−1;θ)xt−1 , σ2
ε

)

.

Hence, the conditional density of xt given xt−1 takes the form,

f(xt|xt−1;θ) =
1

√

2πσ2
ε

exp

(

−
(

xt − α− g(xt−1;θ)xt−1

)2

2σ2
ε

)

.

and the log likelihood function takes the form

QT (θ) :=
1

T

T
∑

t=2

q(xt, xt−1,θ) where

q(xt, xt−1,θ) : = log f(xt|xt−1;θ)

= −
1

2
log 2π −

1

2
log σ2

ε −
(xt − α− g(xt−1;θ)xt−1)2

2σ2
ε

.

The asymptotic normality of the score can be obtained by application of a Central
Limit Theorem (CLT). In particular, we note that {∇q(xt, xt−1,θ0)}t∈Z satisfies a
CLT if:
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C1.1. The sequence {∇q(xt, xt−1,θ0)}t∈Z is SE.

C1.2. ∇q(xt, xt−1,θ0) has two bounded moments E|∇q(xt, xt−1,θ0)|2 < ∞.

C1.3. {∇q(xt, xt−1,θ0)}t∈Z is either a martingale difference sequence, or it is
a NED sequence.1

Condition C1.1 holds because q is continuously differentiable, and hence ∇q is con-
tinuous (and also measurable w.r.t. the Borel σ-algebra). This implies, by Krengel’s
Theorem, that {∇q(xt, xt−1,θ0)}t∈Z is SE since ∇q is a measurable function of the
SE sequence {xt}t∈Z.
Condition C1.2 holds since q(xt, xt−1,θ) has two bounded moments and the criterion
function q is continuously differentiable and well behaved of order 2. The two
bounded moments are obtained as follows

E|q(xt, xt−1,θ)|2 = E|−
1

2
log 2π −

1

2
log σ2

ε −
(xt − α− g(xt−1;θ)xt−1))2

2σ2
ε

∣

∣

∣

2

(by the definition of q(xt, xt−1,θ))

≤ cE|
1

2
log 2π|2 + cE|

1

2
log σ2

ε |2 + cE
∣

∣

∣

(xt − α− g(xt−1;θ)xt−1))2

2σ2
ε

∣

∣

∣

2

(by applying the cn-inequality with some constant c)

≤ c(
1

2
log 2π)2 + c(

1

2
log σ2

ε)
2 + c

1

4σ4
ε

E

∣

∣

∣
xt − α− g(xt−1;θ)xt−1)

∣

∣

∣

4

(dropping the expectation for all constants)

≤ A+ c
1

4σ4
ε

E

∣

∣

∣
xt − α− g(xt−1;θ)xt−1)

∣

∣

∣

4

(defining the constant A := c(
1

2
log 2π)2 + c(

1

2
log σ2

ε)
2)

≤ A+ c′
c

4σ4
ε

E|xt|4 + c′
c

4σ4
ε

|α|4 + c′
c

4σ4
ε

E|g(xt−1;θ)xt−1|4

(applying again the cn-inequality for some constant c′)

≤ A′ + c′
c

4σ4
ε

E|xt|4 + c′
c

4σ4
ε

sup
x

|g(x;θ)|4E|xt−1|4

(because sup
x

|g(x;θ)| is a constant it is taken outside the expectation)

(defining also A′ := A+ c′
c

4σ4
ε

|α|4)

≤ A′ + c′
c

4σ4
ε

E|xt|4 + c′
c

4σ4
ε

k̄ E|xt−1|4

(sup
x

|g(x;θ)| ≤ k̄ for some k̄ ∈ R because g(x;θ) is uniformly bounded)

< ∞.

(because A′ ∈ R, c ∈ R, c′ ∈ R, σ4
ε > 0 ⇒ 1/σ4

ε ∈ R, and E|xt|4 = E|xt−1|4 < ∞)

Condition C1.3 will hold if appropriate conditions are satisfied:

1The CLT for NED sequences requires r moments with r > 2, but as agreed in class, it is ok if you
ignore this point!
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(i) if the model is well specified, then {∇q(xt, xt−1,θ0)}t∈Z is a martingale differ-
ence sequence;

(ii) if the model is misspecified, then {∇q(xt, xt−1,θ0)}t∈Z will be NED if the data
is NED (not stated in question) and if q is Lipschitz continuous.

We thus conclude that the score is asymptotically normal, i.e. that

√
T
1

T

T
∑

t=2

∇q(xt, xt−1,θ0)
d→ N(0,Σ) as T → ∞.

(b) (10pts) Explain how you would show asymptotic normality of θ̂T . Be explicit about
the conditions and concepts you would use. No derivations are needed.
Note: you can assume that certain functions are well behaved and continuously differentiable.

Answer: Since the ML estimator is consistent, i.e. θ̂T
p→ θ0 as T → ∞, to a point

θ0 in the interior of the parameter space Θ, we can apply the classical asymptotic
normality theorem. In particular, if the following conditions hold,

C1. Asymptotic normality of the score

√
T
1

T

T
∑

t=2

∇q(xt, xt−1,θ0)
d→ N(0,Σ) as T → ∞.

C2. Uniform convergence of the second derivative

sup
θ∈Θ

‖
1

T

T
∑

t=2

∇2q(xt, xt−1,θ)− E∇2q(xt, xt−1,θ)‖
p→ 0 as T → ∞.

C3. Invertibility of E∇2q(xt, xt−1,θ0).

Then we can conclude that θ̂T is asymptotically Gaussian

√
T
(

θ̂T − θ0

)

d→ N
(

0,ΩΣΩ%

)

as T → ∞ where Ω :=
(

E∇2q(xt, xt−1,θ0)
)−1

.

The asymptotic normality of the score (condition C1) was obtained in subques-
tion (a). The uniform convergence of the second derivative (condition C2) can be
obtained by ensuring that the following three conditions hold:

C2.1. Θ is compact.

C2.2. The second derivative satisfies a pointwise LLN

1

T

T
∑

t=2

∇2q(xt, xt−1,θ)
p→ E∇2q(xt, xt−1,θ) ∀ θ ∈ Θ as T → ∞.
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C2.3. The second derivative is stochastically equicontinuous

sup
t

E sup
θ∈Θ

∣

∣

∣
∇3q(xt, xt−1,θ)

∣

∣

∣
< ∞.

The compactness of the parameter space (condition C2.1) holds by assumption.

The pointwise LLN (condition C2.2) holds since the following conditions are satisfied

C2.2.1 {∇2q(xt, xt−1,θ)}t∈Z is SE for every θ ∈ Θ.

C2.2.2 E|∇2q(xt, xt−1,θ)| < ∞ for every θ ∈ Θ.

Condition C2.2.1 holds for every θ ∈ Θ because q is twice continuously differentiable,
and hence ∇2q is continuous (and also measurable w.r.t. the Borel σ-algebra) for
every θ ∈ Θ. This implies, by Krengel’s Theorem, that {∇2q(xt, xt−1,θ)}t∈Z is SE
for every θ ∈ Θ because ∇2q is a measurable function of the SE sequence {xt}t∈Z
for every θ ∈ Θ.
Condition C2.2.2 holds since q(xt, xt−1,θ) has one bounded moment (see derivations
above), the criterion function q is two times continuously differentiable, and both q
and ∇q are well behaved of first order (WB(1)).

The stochastic equicontinuity of the criterion’s second derivative (condition C2.3)
holds because q(xt, xt−1,θ) has one bounded moment. First, since the criterion func-
tion q is three times continuously differentiable, we can conclude that {∇3q(xt, xt−1,θ)}t∈Z
is SE by Krengel’s Theorem, because ∇3q is continuous (and hence measurable
w.r.t. Borel’s σ-algebra) on the SE sequence {xt}t∈Z. Second, since q, ∇q and ∇2q
are well behaved of first order, the moment bound on the criterion E|q(xt, xt−1,θ)| <
∞ (shown above) ensures that ∇3q(xt, xt−1,θ) has one bounded moment uniformly
in Θ

E sup
θ∈Θ

∣

∣

∣
∇3q(xt, xt−1,θ)

∣

∣

∣
< ∞

and hence the second derivative is stochastically equicontinuous.

We have thus verified conditions C2.1, C2.2 and C2.3 and are able to conclude that
the second derivative converges uniformly (condition C2).

Finally, we turn to the invertibility condition C3. In particular, we obtain imme-
diately that E∇2q(xt, xt−1,θ0) is invertible if θ0 is the unique maximizer of the
limit criterion function and the Hessian is regular. Uniqueness of θ0 holds under
appropriate conditions:

(i) if the model is correctly specified, then θ0 is unique as long as it is identified
by the information inequality theorem;

(ii) if the model is not correctly specified, then θ0 may still be unique. If unique-
ness fails, then invertibility of E∇2q(xt, xt−1,θ0) will fail and we cannot show
asymptotic normality.
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If conditions C1, C2 and C3, of the classical asymptotic normality theorem hold,
we conclude that

√
T
(

θ̂T − θ0

)

d→ N
(

0,ΩΣΩ%

)

as T → ∞ where Ω :=
(

E∇2q(xt, xt−1,θ0)
)−1

.

(c) (7pts) Explain how you can use the approximate distribution of θ̂T to test the
claim that the temporal dependence in the growth rate of Dutch GDP is stronger
during economic recession periods and weaker during expansions.

Answer: Testing the hypothesis H0 : β0 = 0 against the one-sided alternative that
β0 is strictly positive, H1 : β > 0, is probably the most natural way of addressing
this question. Indeed, for β = 0, the SESTAR model reduces to the linear AR(1)

xt = α + γxt−1 + εt.

This implies that the temporal dependence is the same during expansions and re-
cessions under the null H0. In contrast, under the alternative hypothesis H1, the
temporal dependence in the growth rate of Dutch GDP is stronger during economic
recession periods and weaker during expansions (at least for a positive γ > 0 which
the plotted data suggests). Hence, if we reject the null hypothesis that β0 = 0 we
favour the claim that ‘the growth rate of Dutch GDP is stronger during economic
recession periods and weaker during expansions’.

In practice, we can use the approximate distribution derived in the previous ques-
tions as follows. If H0 : β = 0 is true, then the asymptotic normality results tells us
that the estimator β̂T is approximately Gaussian with mean zero and some variance
σ2
β, i.e.

β̂T ≈ N(0, σ2
β).

After substituting σ2
β by some consistent estimator σ̂2

β, we can finally calculate the
approximate tail probability of any given point estimate obtained from the data and
judge how reasonable the hull hypothesis seems to be. The final decision depends
on the adopted significance level.

Note: If the model is misspecified then the estimator σ̂2
β should be robust to take

into account the potential temporal dependence in the score. Furthermore, in this
case, the null H0 : β0 = 0 is a test on the MLE’s pseudo-true parameter. The test
then asks essentially if the best approximation to the DGP (in KL divergence, over
the space of probability measures for the data) is delivered by a linear AR(1) model
(H0), or by a nonlinear SESTAR (H1).
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