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Question 1 [25 points] Stochastic Properties of Nonlinear Dynamic Models

In economics and finance, time-series may sometimes exhibit time-varying conditional
mean and volatility.
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Figure 1: Time-series with time-varying conditional mean and volatility.

Let {xt}t∈Z be generated according to

xt = µt + σtεt for every t ∈ Z ,

where {εt}t∈Z is a sequence of Gaussian iid random variables {εt}t∈Z ∼ NID(0, 1). Suppose
that the time-varying conditional mean {µt}t∈Z satisfies

µt = 0.2
(
xt−1 − µt−1

)
+ 0.7µt−1 for every t ∈ Z.

Furthermore, let the time-varying volatility {σt}t∈Z be determined by an exogenous se-
quence {zt}t∈Z, according to

σt =
(
1 + tanh(zt)

)
for every t ∈ Z.

Finally, let {zt}t∈Z be generated by the following random coefficient autoregressive model

zt+1 = ρtzt + vt for every t ∈ Z ,

where {ρt}t∈Z is a sequence of iid random variables with uniform distribution {ρt}t∈Z ∼
UID(0 , 1.5) taking values in the interval [0 , 1.5], and {vt}t∈Z is a sequence of Student-t
iid random variables with two degrees of freedom {vt}t∈Z ∼ TID(2).

Note: the acronym iid stands for independent identically distributed.

Note: the function 1 + tanh(·) is uniformly bounded between 0 and 2.

Note: the random variable vt satisfies E|vt|n <∞ for 0 < n < 2.
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(a) (10pts) Can you show that {σt}t∈Z is strictly stationary and ergodic?

Answer: Since the tanh function is continuous, it is also measurable with respect
to the Borel sigma-algebra. As a result, by Krengel’s Theorem, we can conclude
that {σt}t∈Z is an SE sequence as long as {zt}t∈Z is itself SE.

Since {zt}t∈Z is generated by a Markov dynamical system,

zt+1 = ρtzt + vt for every t ∈ Z ,

we can show that {zt}t∈Z is SE by application of Bourgerol’s Theorem.

• Condition A1 of Bougerol’s Theorem is satisfied since the innovation vector
{(ρt, vt)}t∈Z is iid, and hence, it is trivially exogenous and SE.

• Condition A2 of Bougerol’s Theorem is satisfied since, for any initialization z1,
we have

E log+ |ρtz1 + vt| ≤ E|ρtz1 + vt| (because log+ |x| ≤ |x| ∀ x)

≤ |z1|E|ρt|+ E|vt| (by sub-additivity of the absolute value)

≤ |z1|1.5 + E|vt| (since {ρt}t∈Z ∼ UID(0 , 1.5) and hence |ρt| < 1.5)

<∞ (because z1 ∈ R, and {vt}t∈Z ∼ TID(2) and hence E|vt|n <∞ for any n < 2)

• Condition A3 of Bougerol’s Theorem (the contraction condition) is satisfied
since ∂(ρtzt + vt)/∂zt = ρt and hence

E log sup
z
|ρt| = E log |ρt|

≤ logE|ρt| (Jensen’s inequality)

= logEρt (ρt is always positive because {ρt}t∈Z ∼ UID(0 , 1.5))

= log 0.75 < 0. ({ρt}t∈Z ∼ UID(0 , 1.5) implies that Eρt = 0.75)

We thus conclude by Bougerol’s Theorem that the process {zt(z1)}t∈N initialized at
any point z1 converges to a limit SE sequence {zt}t∈Z. Since Bougerol’s conditions
hold for any initialization z1 ∈ R, we can conclude that the sequence starting in the
infinite past {zt}t∈Z is indeed SE.

Finally, as mentioned above, since the process starting in the infinite past {zt}t∈Z
is SE, we conclude that {σt}t∈Z is also SE.

(b) (15pts) Can you show that E|xt|2 <∞? Is {xt}t∈Z weakly stationary?

Answer: From the previous question (a), we already know that {σt}t∈Z is SE.
Furthermore, since the tanh function is uniformly bounded, we know that σt is also
uniformly bounded

|σt| = |1 + tanh(zt)| ≤ sup
z
|1 + tanh(z)| ≤ 2.

We will now show that {µt}t∈Z is SE and has two bounded moments by application
of the Power-n Theorem with n = 2. First, we note that by substituting xt−1 for
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µt−1 + σt−1εt−1 (observation equation) in the updating equation for µt, we find that
{µt}t∈Z is generated according to

µt = 0.2σt−1εt−1 + 0.7µt−1 for every t ∈ Z.

Since this is a Markov dynamical system, we can simply verify if the Power-n con-
ditions hold for n = 2

• Condition A1 of the Power-n Theorem holds because the innovations vector
{(σt−1, εt−1)}t∈Z is clearly exogenous and SE. The SE nature of {σt−1)}t∈Z was
shown in the previous question (a), and the SE nature of {εt−1}t∈Z follows
immediately since this sequence is iid.

• Condition A2 of the Power-n Theorem holds for any initialization µ1 since

E|0.2σt−1εt−1 + 0.7µ1|2 ≤ 0.2cE|σt−1εt−1|2 + 0.7cE|µ1|2 (by the cn-inequality)

≤ 0.2cE|σt−1|2|E|εt−1|2 + 0.7c|µ1|2 (because σt−1 and εt−1 are independent)

≤ 0.2c2E|εt−1|2 + 0.7c|µ1|2 (because σt is uniformly bounded σt < 2 a.s.)

<∞ (because c ∈ R, µ1 ∈ R, and {εt}t∈Z ∼ NID(0, 1) and hence E|εt−1|n <∞∀n)

• Condition A3 of the Power-n Theorem (the contraction condition) is satisfied
for n = 2 since

sup
µ

∣∣∣∂(0.2σt−1εt−1 + 0.7µ)

∂µ

∣∣∣2 = sup
µ
|0.7|2 = 0.72,

and hence, the degenerate random variable ρn(εt−1) = 0.72, which is trivially
independent of µt−1, bounds the uniform derivative of interest, and satisfies
the contraction condition

Eρ2(εt−1) = E0.72 < 1.

We thus conclude by application the Power-n Theorem, with n = 2, that the pro-
cess {µt(µ1)}t∈N initialized at time t = 1 with some value µ1 converges to a limit
process {µt}t∈Z which is SE and has two bounded moments E|µt|2 <∞. Since, the
conditions of the Power-n Theorem were shown to hold for any initialization µ1 ∈ R
we further conclude that the process {µt}t∈Z initialized in the infinite past is indeed
SE with two bounded moments.

Finally, we turn to the process {xt}t∈Z. First, we note that {xt}t∈Z is SE by Kren-
gel’s Theorem since it is generated as a continuous function (and hence measurable
w.r.t. the Borel sigma-algebra) of the independent SE sequences {µt}t∈Z, {σt}t∈Z
and {εt}t∈Z. Furthermore, we note that any element xt of the sequence {xt}t∈Z has
two bounded moments since

E|xt|2 ≤ E|µt + σtεt|2

≤ cE|µt|2 + cE|σtεt|2 (by the cn-inequality)

≤ cE|µt|2 + cE|σt|2E|εt|2 (because σt and εt are independent)

≤ cE|µt|2 + c4E|εt|2 (because σt ≤ 2 a.s.)

<∞ (because c ∈ R, E|µt|2 <∞ and {εt}t∈Z ∼ NID(0, 1) and hence E|εt|n <∞∀n )

4



Since {xt}t∈Z is an SE sequence with two bounded moments E|xt|2 < ∞, we can
conclude that {xt}t∈Z is weakly stationary.
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Question 2 [25 points] Consistency and Asymptotic Normality of M-Estimators

Let xT := (x1, ..., xT ) be a subset of a fat-tailed strictly stationary and ergodic sequence
{xt}t∈Z satisfying E|xt|4 <∞. It is well known that the least squares estimator is sensitive
to the presence of outliers in the data. Let θ̂T be a robust M-estimator given by

θ̂T ∈ arg max
θ∈Θ
− 1

T

T∑
t=2

ut(θ)2

1 + ut(θ)2

where ut(θ) denotes the regression residuals of a nonlinear autoregressive model

ut(θ) := xt − φ(xt−1,θ) for every t.

Residual

 

(least squares criterion)

ut(θ)
2

1+ut(θ)2

(robust criterion)

ut(θ)
2

ut(θ)

Figure 2: Comparison of the least squares and robust least squares criterion function.

Note: The function ut(θ)2/(1 + ut(θ)2) is uniformly bounded between 0 and 1.

(a) (10 pts) Give sufficient conditions for the existence and measurability of the esti-
mator θ̂T .

Answer: Define Q(xT ,θ) := − 1
T

∑T
t=2 q(xt, xt−1,θ) where

q(xt, xt−1,θ) :=
ut(θ)2

1 + ut(θ)2
=

(xt − φ(xt−1,θ))2

1 + (xt − φ(xt−1,θ))2
.

Sufficient conditions for the existence and measurability of the estimator θ̂T are:

(i) Compactness of the parameter space Θ.

(ii) Continuity of the criterion function QT (·,θ) : RT → R for every θ ∈ Θ.
(which is ensured if the function φ(·,θ) : R→ R is continuous for every θ ∈ Θ).

(iii) Continuity of the criterion function QT (xT , ·) : Θ → R for every sample
point xT ∈ RT (which is ensured if the function φ(xt−1, ·) : Θ→ R is continuous
for every data point xt−1 ∈ R).
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The compactness of Θ and the continuity of φ in both arguments are thus the two
additional sufficient conditions needed for the existence and measurability of the
robust least squares estimator.

(b) (15 pts) Give sufficient conditions for θ̂T to be consistent for some point θ0 ∈ Θ.

In other words, give conditions that ensure θ̂T
p→ θ0 as T →∞.

Note: you can assume that certain functions are well behaved and continuously differentiable.

Answer: Define again QT (xt,θ) := − 1
T

∑T
t=2 q(xt, xt−1,θ) where

q(xt, xt−1,θ) :=
ut(θ)2

1 + ut(θ)2
.

Under the compactness of Θ and the continuity conditions mentioned in the previous
question, we know first of all that θ̂T exists and is measurable. Hence, by the
classical consistency theorem for M-estimators, we can obtain the consistency θ̂T

p→
θ0 as T →∞ from the following two conditions

C1. The uniform convergence of the criterion function

sup
θ∈Θ

∣∣∣QT (xT ,θ)−Q∞(θ)
∣∣∣ p→ 0 as T →∞.

C2. The identifiable uniqueness of θ0 ∈ Θ,

sup
θ∈Sc(θ0,δ)

Q∞(θ) < Q∞(θ0) for every δ > 0,

where Sc(θ0, δ) denotes the complement of an open ball of radius δ centered
at θ0.

The uniform convergence of the criterion function (Condition C1) is implied by the
pointwise convergence of the criterion QT

C1.1. QT (xT ,θ)
p→ Q∞(θ) ∀ θ ∈ Θ as T →∞,

and the stochastic equicontinuity of the criterion QT

C1.2. supT E supθ∈Θ

∥∥∥∂QT (xT ,θ)
∂θ

∥∥∥ <∞.

The pointwise convergence of the criterion (Condition C1.1) can be obtained by the
application of a law of large numbers to the criterion function for every θ ∈ Θ. In
particular, if φ(·,θ) : R → R is continuous on R for every θ ∈ Θ (as assumed in
the previous question), then it is also measurable w.r.t. the Borel σ-algebra, and
hence, by Krengel’s Theorem, {q(xt, xt−1,θ)}t∈N is SE for every θ ∈ Θ, because q is
a measurable function of the SE sequence {xt}t∈Z for every θ ∈ Θ. Furthermore, it
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is easy to show that q(xt, xt−1,θ) has one bounded moment for every θ ∈ Θ since
q(xt, xt−1,θ) is actually uniformly bounded

E|q(xt, xt−1,θ)| = E
∣∣∣ ut(θ)2

1 + ut(θ)2

∣∣∣
≤ sup

u

∣∣∣ u2

1 + u2

∣∣∣ ≤ 1 (because z2/(1 + z2) is unformly bounded by 1)

We thus obtain the pointwise convergence (condition C1.1) by application of the
LLN for SE sequences for every θ ∈ Θ

1

T

T∑
t=1

q(xt, xt−1,θ)
p→ Eq(xt, xt−1,θ) ∀ θ ∈ Θ as T →∞.

Since q is continuously differentiable and well behaved of order 1, the moment bound
E|q(xt, xt−1,θ)| <∞ for some θ ∈ Θ implies also that

sup
T

E sup
θ∈Θ

∥∥∥∂QT (xT ,θ)

∂θ

∥∥∥ = E sup
θ∈Θ

∥∥∥ 1

T

T∑
t=2

∇q(xt, xt−1,θ)
∥∥∥

≤ 1

T

T∑
t=2

E sup
θ∈Θ

∥∥∥∇q(xt, xt−1,θ)
∥∥∥ <∞

and hence the stochastic equicontinuity condition (C1.2) is also satisfied.

Finally, if θ0 ∈ Θ is the unique maximizer of the limit criterion function

Q∞(θ) = Eq(xt, xt−1,θ) < Eq(xt, xt−1,θ0) = Q∞(θ0) ∀ θ 6= θ0

then, given the compactness of Θ and the continuity of the limit criterion Q∞ on Θ
we obtain that θ0 is the identifiably unique maximizer of Q∞ (condition C.2).

Since conditions C.1 (uniform convergence) and C.2 (identifiable uniqueness) stated

above hold, we can conclude that θ̂T is consistent for θ0, i.e. that θ̂T
p→ θ0. Note

that we have imposed the following (non-stated) conditions to obtain this result:

(1) Θ is compact,

(2) φ is continuous in xt−1 and θ,

(3) θ0 is the unique maximizer of the limit criterion function Q∞.
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Question 3 [25 points] Nonlinear Dynamic Model of Dutch GDP

Some econometricians claim that the temporal dependence in the growth rate of the Gross
Domestic Product (GDP) is stronger during economic recession periods and weaker during
expansions. Figure 1 plots the growth rate of quarterly real GDP in The Netherlands.

1988 2000 2014

%
 G

ro
w

th
 R

a
te

-3

-2

-1

0

1

2

3

4

5

Figure 3: Real GDP growth rate for The Netherlands (in percentage).

Let the sample of GDP growth rates {xt}Tt=1 at your disposal be a subset of the realized
path of a strictly stationary and ergodic time-series {xt}t∈Z with bounded moments of
fourth order E|xt|4 < ∞. Consider the Gaussian logistic Self Excited Smooth Transition
Autoregressive (SESTAR) model

xt = α + g(xt−1;θ)xt−1 + εt for every t ∈ Z where {εt}t∈Z ∼ NID(0, σ2
ε)

and g(xt−1;θ) :=
γ

1 + exp(βxt−1)
for every t ∈ Z.

Suppose that the parameters θ = (α, γ, β, σ2
ε) of the model are estimated by maximum

likelihood (ML) on a compact parameter space Θ with σ2
ε > 0. Note also that g(x;θ) is

uniformly bounded since |g(x;θ)| ≤ |γ| for every (x,θ).

(a) (15pts) Suppose that the ML estimator θ̂T is consistent for a parameter θ0 in the
interior of Θ. Can you obtain an approximate distribution for the ML estimator?
Note: you can assume that certain functions are well behaved and continuously differentiable.

Answer: Note first that, according to the SESTAR model, the distribution of xt
conditional on xt−1 is given by

xt|xt−1 ∼ N
(
α + g(xt−1;θ)xt−1 , σ

2
ε

)
.

Hence, the conditional density of xt given xt−1 takes the form,

f(xt|xt−1;θ) =
1√

2πσ2
ε

exp

(
−
(
xt − α− g(xt−1;θ)xt−1

)2

2σ2
ε

)
.

and the log likelihood function takes the form

QT (θ) :=
1

T

T∑
t=2

q(xt, xt−1,θ) where
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q(xt, xt−1,θ) : = log f(xt|xt−1;θ)

= −1

2
log 2π − 1

2
log σ2

ε −
(xt − α− g(xt−1;θ)xt−1)2

2σ2
ε

.

Since the ML estimator is consistent, i.e. θ̂T
p→ θ0 as T →∞, to a point θ0 in the

interior of the parameter space Θ, we can apply the classical asymptotic normality
theorem. In particular, if the following conditions hold,

C1. Asymptotic normality of the score

√
T

1

T

T∑
t=2

∇q(xt, xt−1,θ0)
d→ N(0,Σ) as T →∞.

C2. Uniform convergence of the second derivative

sup
θ∈Θ
‖ 1

T

T∑
t=2

∇2q(xt, xt−1,θ)− E∇2q(xt, xt−1,θ)‖ p→ 0 as T →∞.

C3. Invertibility of E∇2q(xt, xt−1,θ0).

Then we can conclude that θ̂T is asymptotically Gaussian

√
T
(
θ̂T − θ0

)
d→ N

(
0,ΩΣΩ>

)
as T →∞ where Ω :=

(
E∇2q(xt, xt−1,θ0)

)−1

.

The asymptotic normality of the score (Condition C.1) can be obtained by applica-
tion of a Central Limit Theorem (CLT). In particular, we note that {∇q(xt, xt−1,θ0)}t∈Z
satisfies a CLT if:

C1.1. The sequence {∇q(xt, xt−1,θ0)}t∈Z is SE.

C1.2. ∇q(xt, xt−1,θ0) has two bounded moments E|∇q(xt, xt−1,θ0)|2 <∞.

C1.3. {∇q(xt, xt−1,θ0)}t∈Z is either a martingale difference sequence, or it is
Lp-approximable.

Condition C1.1 holds because q is continuously differentiable, and hence ∇q is con-
tinuous (and also measurable w.r.t. the Borel σ-algebra). This implies, by Krengel’s
Theorem, that {∇q(xt, xt−1,θ0)}t∈Z is SE since ∇q is a measurable function of the
SE sequence {xt}t∈Z.

Condition C1.2 holds since q(xt, xt−1,θ) has two bounded moments and the criterion
function q is continuously differentiable and well behaved of order 2. The two
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bounded moments are obtained as follows

E|q(xt, xt−1,θ)|2 = E| − 1

2
log 2π − 1

2
log σ2

ε −
(xt − α− g(xt−1;θ)xt−1))2

2σ2
ε

∣∣∣2
(by the definition of q(xt, xt−1,θ))

≤ cE|1
2

log 2π|2 + cE|1
2

log σ2
ε |2 + cE

∣∣∣(xt − α− g(xt−1;θ)xt−1))2

2σ2
ε

∣∣∣2
(by applying the cn-inequality with some constant c)

≤ c(
1

2
log 2π)2 + c(

1

2
log σ2

ε)
2 + c

1

4σ4
ε

E
∣∣∣xt − α− g(xt−1;θ)xt−1)

∣∣∣4
(dropping the expectation for all constants)

≤ A+ c
1

4σ4
ε

E
∣∣∣xt − α− g(xt−1;θ)xt−1)

∣∣∣4
(defining the constant A := c(

1

2
log 2π)2 + c(

1

2
log σ2

ε)2)

≤ A+ c′
c

4σ4
ε

E|xt|4 + c′
c

4σ4
ε

|α|4 + c′
c

4σ4
ε

E|g(xt−1;θ)xt−1|4

(applying again the cn-inequality for some constant c′)

≤ A′ + c′
c

4σ4
ε

E|xt|4 + c′
c

4σ4
ε

sup
x
|g(xt−1;θ)|4E|xt−1|4

(because sup
x
|g(x;θ)| is a constant it is taken outside the expectation)

(defining also A′ := A+ c′
c

4σ4
ε

|α|4)

≤ A′ + c′
c

4σ4
ε

E|xt|4 + c′
c

4σ4
ε

k̄ E|xt−1|4

(sup
x
|g(x;θ)| ≤ k̄ for some k̄ ∈ R because g(x;θ) is uniformly bounded)

<∞.
(because A′ ∈ R, c ∈ R, c′ ∈ R, σ4

ε > 0⇒ 1/σ4
ε ∈ R, and E|xt|4 = E|xt−1|4 <∞)

Condition C1.3 holds since: (i) if the model is well specified, then {∇q(xt, xt−1,θ0)}t∈Z
is a martingale difference sequence; and (ii) if the model is misspecified, then
{∇q(xt, xt−1,θ0)}t∈Z is Lp-approximable because θ0 is the unique maximizer of the
limit criterion (by assumption) and q is continuously differentiable and well behaved
of order 1.

We thus conclude that the score is asymptotically normal, i.e. that

√
T

1

T

T∑
t=2

∇q(xt, xt−1,θ0)
d→ N(0,Σ) as T →∞.

The uniform convergence of the second derivative (condition C2) can be obtained
by ensuring that the following three conditions hold:

C2.1. Θ is compact.
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C2.2. The second derivative satisfies a pointwise LLN

1

T

T∑
t=2

∇2q(xt, xt−1,θ)
p→ E∇2q(xt, xt−1,θ) ∀ θ ∈ Θ as T →∞.

C2.3. The second derivative is stochastically equicontinuous

sup
t

E sup
θ∈Θ

∣∣∣∇3q(xt, xt−1,θ)
∣∣∣ <∞.

The compactness of the parameter space (condition C2.1) holds by assumption.

The pointwise LLN (condition C2.2) holds since the following conditions are satisfied

C2.2.1 {∇2q(xt, xt−1,θ)}t∈Z is SE for every θ ∈ Θ.

C2.2.2 E|∇2q(xt, xt−1,θ)| <∞ for every θ ∈ Θ.

The SE nature of the second derivative (condition C2.2.1) holds for every θ ∈ Θ
because q is twice continuously differentiable, and hence ∇2q is continuous (and
also measurable w.r.t. the Borel σ-algebra) for every θ ∈ Θ. This implies, by
Krengel’s Theorem, that {∇2q(xt, xt−1,θ)}t∈Z is SE for every θ ∈ Θ because ∇2q is
a measurable function of the SE sequence {xt}t∈Z for every θ ∈ Θ.

The moment bound for the second derivative (condition C2.2.2) holds since q(xt, xt−1,θ)
has one bounded moment (see derivations above), the criterion function q is two
times continuously differentiable, and both q and ∇q are well behaved of first order.

The stochastic equicontinuity of the criterion’s second derivative (condition C2.3)
holds because q(xt, xt−1,θ) has one bounded moment. First, since the criterion func-
tion q is three times continuously differentiable, we can conclude that {∇3q(xt, xt−1,θ)}t∈Z
is SE by Krengel’s Theorem, because ∇3q is continuous (and hence measurable
w.r.t. Borel’s σ-algebra) on the SE sequence {xt}t∈Z. The SE nature of {∇3q(xt, xt−1,θ)}t∈Z
implies also that

sup
t

E sup
θ∈Θ

∣∣∣∇3q(xt, xt−1,θ)
∣∣∣ = E sup

θ∈Θ

∣∣∣∇3q(xt, xt−1,θ)
∣∣∣.

Second, since q, ∇q and ∇2q are well behaved of first order, the moment bound on
the criterion E|q(xt, xt−1,θ)| < ∞ (shown above) ensures that ∇3q(xt, xt−1,θ) has
one bounded moment uniformly in Θ

E sup
θ∈Θ

∣∣∣∇3q(xt, xt−1,θ)
∣∣∣ <∞

and hence the second derivative is stochastically equicontinuous.

We have thus verified conditions C2.1, C2.2and C2.3 and are able to conclude that
the second derivative converges uniformly (condition C2).

Finally, we turn to the invertibility condition C3. In particular, we obtain immedi-
ately that E∇2q(xt, xt−1,θ0) is invertible because θ0 is the unique maximizer of the
limit criterion function (given by assumption).
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Since conditions C1, C2 and C3, of the classical asymptotic normality theorem hold,
we conclude that
√
T
(
θ̂T − θ0

)
d→ N

(
0,ΩΣΩ>

)
as T →∞ where Ω :=

(
E∇2q(xt, xt−1,θ0)

)−1

.

This asymptotic result suggests that, in finite samples, we have
√
T
(
θ̂T − θ0

)
≈ N

(
0,ΩΣΩ>

)
which naturally implies that θ̂T is approximately Gaussian, with mean θ0, and a
vanishing variance-covariance matrix given by ΩΣΩ>/T ,

θ̂T ≈ N
(
θ0 , ΩΣΩ>/T

)
.

(b) (10pts) Explain how you can use the approximate distribution of θ̂T to test the
claim that the temporal dependence in the growth rate of Dutch GDP is stronger
during economic recession periods and weaker during expansions.

Answer: Testing the hypothesis H0 : β0 = 0 against the one-sided alternative that
β0 is strictly positive, H1 : β > 0, is probably the most natural way of addressing
this question. Indeed, for β = 0, the SESTAR model reduces to the linear AR(1)

xt = α + γxt−1 + εt.

This implies that the temporal dependence is the same during expansions and re-
cessions under the null H0. In contrast, under the alternative hypothesis H1, the
temporal dependence in the growth rate of Dutch GDP is stronger during economic
recession periods and weaker during expansions (at least for a positive γ > 0 which
the plotted data suggests). Hence, if we reject the null hypothesis that β0 = 0 we
favour the claim that ‘the growth rate of Dutch GDP is stronger during economic
recession periods and weaker during expansions’.

In practice, we can use the approximate distribution derived in the previous ques-
tions as follows. If H0 : β = 0 is true, then the asymptotic normality results tells us
that the estimator β̂T is approximately Gaussian with mean zero and some variance
σ2
β, i.e.

β̂T ≈ N(0, σ2
β).

After substituting σ2
β by some consistent estimator σ̂2

β, we can finally calculate the
approximate tail probability of any given point estimate obtained from the data and
judge how reasonable the hull hypothesis seems to be. The final decision depends
on the adopted significance level.

Note: If the model is misspecified then the estimator σ̂2
β should be robust to take

into account the potential temporal dependence in the score. Furthermore, in this
case, the null H0 : β0 = 0 is a test on the MLE’s pseudo-true parameter. The test
then asks essentially if the best approximation to the DGP (in KL divergence, over
the space of probability measures for the data) is delivered by a linear AR(1) model
(H0), or by a nonlinear SESTAR (H1).
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Question 4 [25 points] Time-varying Conditional Volatility in Stock Markets

Financial returns often exhibit ‘clusters of volatility’ and ‘leverage effects’. Figure 2 plots
the time-series of daily percentage returns for the S&P500 stock market index.

2006 2008 2011 2014
-0.1

-0.05

0

0.05

0.1

Figure 4: Daily S&P500 percentage returns.

Let the sample of S&P500 returns {xt}Tt=1 at your disposal be a subset of the realized path
of a strictly stationary and ergodic time-series {xt}t∈Z satisfying E|xt|8 <∞. Consider the
Asymetric Generalized Autoregressive Conditional Heteroscedasticity (AGARCH) model

xt = σtεt for every t ∈ Z where {εt}t∈Z ∼ NID(0, 1),

where σ2
t = ω + α(xt−1 − δ)2 + βσ2

t−1 for every t ∈ Z.

Suppose that the parameters θ = (ω, α, δ, β) of the model are estimated by maximum
likelihood (ML) on a compact parameter space Θ with ω, α and β satisfying

ω > a, α > a, and a < β < 1 for some a > 0.

Note: that the parameter restrictions ensure that σ2
t > a > 0 for every t.

(a) (7pts) Give the expression for the log likelihood function.

Answer: Note first that, according to the AGARCH model, the conditional volatil-
ity σ2

t is known conditional on past data x1, x2, ..., xt−1 and the initialization point
σ2

1 ∈ R+. As such, the distribution of xt conditional on the past xt−1, xt−2, ... is
given by

xt|xt−1, xt−2, ... ∼ N
(

0 , σ2
t (σ

2
1,θ)

)
where σ2

t (σ
2
1,θ) denotes the filtered volatility at time t, obtained under the initial-

ization σ2
1 ∈ R+ and the parameter vector θ ∈ Θ. Hence, the conditional density of

xt given xt−1, xt−2, ... takes the form,

f(xt|xt−1, xt−2, ...;θ) = f(xt|σ2
t (σ

2
1,θ)) =

1√
2πσ2

t (σ
2
1,θ)

exp

(
−x2

t

2σ2
t (σ

2
1,θ)

)
.
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Naturally, since the joint density of the data can be factorized as a product of
conditional densities, we obtain (ignoring the first marginal)

f(x1, ..., xT ;θ) =
T∏
t=2

f(xt|xt−1, xt−2, ...;θ) =
T∏
t=2

f(xt|σ2
t (σ

2
1,θ))

and hence

log f(x1, ..., xT ;θ) =
T∑
t=2

log f(xt|σ2
t (σ

2
1,θ))

As such the normalized log likelihood function takes the form

QT (xT ,θ) :=
1

T

T∑
t=2

q(xt, σ
2
t (σ

2
1,θ)) where

q(xt, σ
2
t (σ

2
1,θ)) : = log f(xt|σ2

t (σ
2
1,θ))

= −1

2
log 2π − 1

2
log σ2

t (σ
2
1,θ)− x2

t

2σ2
t (σ

2
1,θ)

.

(b) (18pts) Suppose that there exists a θ0 ∈ Θ that is the unique maximizer of the
limit log likelihood function. Can you show that the ML estimator θ̂T is consistent
for θ0?
Note: you can assume that certain functions are well behaved and continuously differentiable.

Answer: In preparation for the consistency result, we establish first the stochastic
properties of the filter (Part I), and later, turn to the consistency argument (Part
II).

PART I

As we shall now see, for every θ ∈ Θ, and any initialization σ2
1 ∈ R+, the filtered

volatility {σ2
t (σ

2
1,θ)}t∈N initialized at time t = 1, at the value σ2

1, converges e.a.s. to
a unique limit SE sequence {σ2

t (θ)}t∈Z with two bounded moments E|σ2
t (θ)|2 <∞.

We obtain this result by analyzing the update equation

σ2
t = ω + α(xt−1 − δ)2 + βσ2

t−1

which takes the form of a Markov dynamical system with differentiable autoregres-
sive dynamics. In particular, we proceed by verifying that the conditions of the
Power-n Theorem hold for any θ ∈ Θ, any σ2

1 ∈ R+, and n = 2:

• Condition A1 of the Power-n Theorem holds because the innovations {xt}t∈Z
are exogenous and SE (given).

15



• Condition A2 of the Power-n Theorem is satisfied for any θ, any σ2
1 and n = 2

since

E|ω + α(xt−1 − δ)2 + βσ2
1|2 ≤ cE|ω|2 + cE|α(xt−1 − δ)2|2 + cE|βσ2

1|2

(cn-inequality for some c ∈ R)

= cω2 + cα2E|xt−1 − δ|4 + cβ2σ4
1

(dropping expectations of constants)

= cω2 + cα2c′E|xt−1|4 + cα2c′|δ|4 + cβ2σ4
1

(applying again the cn-inequality for some c′ ∈ R)

<∞
(because c ∈ R, c′ ∈ R, ω ∈ R, α ∈ R, β ∈ R,

σ2
1 ∈ R, and E|xt|4 <∞)

• Condition A3 of the Power-n Theorem (the contraction condition) is satisfied
for any θ and n = 2 since

sup
σ2

∣∣∣∂(ω + α(xt−1 − δ)2 + βσ2)

∂σ2

∣∣∣2 = sup
σ2

|β|2 = β2,

and hence, the degenerate random variable ρ2(xt) = β2, which is trivially
independent of σ2

t , bounds the uniform derivative of interest, and satisfies the
contraction condition

Eρ2(xt) = Eβ2 = β2 < 1 because a < β < 1.

We thus conclude by application the Power-n Theorem, that the process {σ2
t (σ

2
1,θ)}t∈N

initialized at time t = 1 with any given value σ2
1 converges to a unique limit process

{σ2
t (θ)}t∈Z which is SE and has two bounded moments E|σ2

t (θ)|2 <∞.

PART II

Define again

QT (xT ,θ) :=
1

T

T∑
t=2

q(xt, σ
2
t (σ

2
1,θ)) where

q(xt, σ
2
t (σ

2
1,θ)) := −1

2
log 2π − 1

2
log σ2

t (σ
2
1,θ)− x2

t

2σ2
t (σ

2
1,θ)

.

By the classical consistency theorem for M-estimators, we can obtain the consistency
of θ̂T

p→ θ0 as T →∞ from the following three conditions:

C0. θ̂T exists and is measurable.

C1. The uniform convergence of the criterion function

sup
θ∈Θ

∣∣∣ 1

T

T∑
t=2

q(xt, σ
2
t (σ

2
1,θ))− Eq(xt, σ2

t (θ))
∣∣∣ p→ 0 as T →∞.
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C2. The identifiable uniqueness of θ0 ∈ Θ,

sup
θ∈Sc(θ0,δ)

Eq(xt, σ2
t (θ)) < Eq(xt, σ2

t (θ0)) for every δ > 0,

where Sc(θ0, δ) denotes the complement of an open ball of radius δ centered
at θ0.

The existence and measurability of θ̂T (condition C0) is ensured by the following
conditions

C0.1 Compactness of the parameter space Θ.

C0.2 Continuity of the criterion function on the data xT ∈ RT for every θ ∈ Θ.

C0.3 Continuity of the criterion function on the parameter θ for every data
point xT ∈ RT ).

The compactness of the parameter space Θ (condition C0.1) is given.

The continuity of the criterion on the data and the parameter (conditions C0.2 and
C0.3) hold since the Gaussian density is continuous for σ2

t > a > 0 and since the
updating equation for σ2

t is continuous on the data and the parameters.

The uniform convergence of the criterion function (Condition C1) is implied by the
pointwise convergence of the log likelihood

C1.1. 1
T

∑T
t=2 q(xt, σ

2
t (σ

2
1,θ))

p→ Eq(xt, σ2
t (θ)) ∀ θ ∈ Θ as T →∞,

and the stochastic equicontinuity of the loglikelihood

C1.2. supt E supθ∈Θ

∥∥∥∇q(xt, σ2
t (σ

2
1,θ))

∥∥∥ <∞.

Since q is uniformly continuous and the filter {σ2
t (σ

2
1,θ)}t∈Z converges to a limit SE

sequence {σ2
t (θ)}t∈Z for every θ ∈ Θ (see Part 1 of proof above),

|σ2
t (σ

2
1,θ)− σ2

t (θ)| p→ 0 as T →∞ ,

the pointwise convergence of the log likelihood can be obtained instead by the ap-
plication of a LLN for every θ ∈ Θ to the log likelihood evaluated at the limit SE
filter {σ2

t (θ)}t∈Z,

1

T

T∑
t=2

q(xt, σ
2
t (θ))

p→ Eq(xt, σ2
t (θ)) ∀ θ ∈ Θ as T →∞.

We verify that this LLN holds by noting that {q(xt, σ2
t (θ))}t∈N is SE for every

θ ∈ Θ, by Krengel’s Theorem, because q is continuous (and hence Borel-measurable)
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function of the SE sequences {xt}t∈Z and {σ2
t (θ)}t∈Z for every θ ∈ Θ. Furthermore,

it is easy to show that q(xt, σ
2
t (θ)) has two bounded moments for every θ ∈ Θ since

E|q(xt, σ2
t (θ))|2 = E

∣∣∣− 1

2
log 2π − 1

2
log σ2

t (θ)− x2
t

2σ2
t (θ)

∣∣∣2
(by the definition of q(xt, σ

2
t (θ)))

≤ A+
1

4
cE| log σ2

t (θ)|2 + cE
∣∣∣ x2

t

2σ2
t (θ)

∣∣∣2
(by the cn-inequality and defining A := c(

1

2
log 2π)2)

≤ A+
c

4
E|σ2

t (θ)|2 + cE
∣∣∣x2

t

2a

∣∣∣2
(since E| log(zt)|n <∞⇐ E|zt|n <∞ when zt ≥ a > 0 a.s.

and because σ2
t (θ) > a a.s. implies that

x2t
2σ2

t (θ)
≤ x2t

2a
a.s.)

≤ A+
c

4
E|σ2

t (θ)|2 +
c

4a2
E|xt|4

(bring constant outside)

<∞
(because E|σ2

t (θ)|2 <∞ [Part 1 of proof]

and E|xt|4 <∞ [given] and c ∈ R and A ∈ R)

We thus obtain the pointwise convergence (condition C1.1) by the uniform continuity
of q, the convergence of the filter to a limit SE sequence, and the application of a
LLN for every θ ∈ Θ.

Since the conditions of the Power-n Theorem hold for n = 2 [Part 1 of the proof],
and q is continuously differentiable and well behaved of order 2, the second order
moment bound E|q(xt, σ2

t (σ
2
1,θ))|2 <∞ obtained above for some θ ∈ Θ implies also

that

sup
t

E sup
θ∈Θ

∥∥∥∇q(xt, σ2
t (σ

2
1,θ))

∥∥∥ <∞.
and hence the stochastic equicontinuity condition (C1.2) is also satisfied.

Finally, if θ0 ∈ Θ is the unique maximizer of the limit criterion function

Q∞(θ) = Eq(xt, σ2
t (σ

2
1,θ)) < Eq(xt, σ2

t (θ)) = Q∞(θ0) ∀ θ 6= θ0

then, given the compactness of Θ and the continuity of the limit criterion Q∞ in θ
we obtain that θ0 is the identifiably unique maximizer of Q∞ (condition C.2).

Since conditions C.1 (uniform convergence) and C.2 (identifiable uniqueness) stated

above hold, we can conclude that θ̂T is consistent for θ0, i.e. that θ̂T
p→ θ0.
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