advanced Econometrics deel I

Question 1 (50 out of 100 points)

Consider the following *n*-dimensional vector autoregressive (VAR) process of order 2 for $t=3,\ldots,T$:

$$y_t = \gamma + \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \varepsilon_t \tag{1}$$

$$\varepsilon_t \sim \mathsf{NID}(0,\Sigma)$$
. (2)

The values of y_1 and y_2 are known.

- 1. Provide two equivalent formulations of the conditions under which $\{y_t\}$ in (1)-(2) is weakly stationary. NB: The terms 'weak stationarity' and 'covariance stationarity' are synonymous.
- 2. Derive the log-likelihood function of the sample conditional on y_1 and y_2 . You may use the fact that the density of a multivariate Normal random variable $z \sim N(\mu, \Gamma)$ is

$$f\left(z\right)=\left(\det\left(2\pi\Gamma\right)\right)^{-1/2}\exp\left(-\frac{1}{2}\left(z-\mu\right)'\Gamma^{-1}\left(z-\mu\right)\right).$$

Assume for simplicity that in (1)-(2) the dimension n=2 such that, for instance, y_t is the (2×1) vector

$$y_t = \left(\begin{array}{c} y_{1t} \\ y_{2t} \end{array}\right).$$

Define the concept of Granger-causality, and explain how you would test the null hypothesis that y_{2t} does not Granger-cause y_{1t} in the model (1)-(2).

Consider now the full-sample representation of a seemingly unrelated regressions (SUR) model

$$y = X\beta + \varepsilon \tag{3}$$

$$\varepsilon \sim N(0,\Omega)$$
 (4)

where

$$\beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}, \quad X = \begin{pmatrix} X_1 & 0 \\ & \ddots & \\ 0 & X_n \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

with $X_i=(x_{i1}:\dots:x_{iT})',\ y_i=(y_{i1}:\dots:y_{iT})'$ and similarly for $\varepsilon_i,\ i=1,\dots,n$. While y_{it} and ε_{it} are scalars both x_{it} and β_i are vectors of dimension $(k\times 1)$. Importantly, it is assumed that

$$\mathsf{E}\left(\varepsilon_{it}\right) = 0$$

$$\mathsf{E}\left(\varepsilon_{it}\varepsilon_{js}\right) = \begin{cases} \sigma_{ij}, & \text{when } t = s \\ 0, & \text{when } t \neq s. \end{cases}$$

 \checkmark Argue that the GLS estimator of β in (3), i.e.

$$\hat{\beta} = \left(X' \Omega^{-1} X \right)^{-1} X' \Omega^{-1} y,$$

has minimum variance amongst all linear unbiased estimators of β in model (3)-(4).

5. Show that the VAR(2) model in (1)-(2) may be written in SUR form (3)-(4) and that it may in fact be efficiently estimated by OLS.

page 2 of 3

Question 2 (50 out of 100 points)

Consider an autoregressive distributed lag (ADL) model of order (1,1):

$$y_t = \alpha + \phi_1 y_{t-1} + \beta_0 x_t + \beta_1 x_{t-1} + \varepsilon_t \tag{5}$$

$$\varepsilon_t \sim \text{NID}(0, \sigma^2)$$
 (6)

1. Derive the error correction representation of (5)-(6). Interpret the components of the error correction form.

Interest now lies on a stochastic process $\{x_t\}$ and one suspects that it is a random walk.

2. Is a random walk mean-reverting? Are its shocks transient? Justify your answers.

Suppose that the relationship between two stochastic processes $\{x_t\}$ and $\{y_t\}$ is investigated, both of which are known to be integrated of order 1, i.e. they are I(1).

- 3. Provide intuition behind the concept of cointegration.
- 4. Explain in detail how you would test for cointegration between x_t and y_t using the Engle-Granger 2-step procedure.

The following Monte Carlo experiment was conducted: Data of the processes

$$\begin{array}{rcl} x_t &=& 0.8x_{t-1} + u_t \\ y_t &=& 0.8y_{t-1} + v_t \\ \left(\begin{array}{c} u_t \\ v_t \end{array} \right) &\sim & \mathsf{NID} \left[\left(\begin{array}{c} 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \right] \end{array}$$

were generated for t = 1, ..., T. Subsequently, the model

$$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t, \quad \varepsilon_t \sim \text{NID}(0, \sigma^2)$$

was estimated by OLS and a t-test for the hypothesis

$$H_0: \beta_1 = 0 \tag{7}$$

was conducted against the alternative $H_1: \beta_1 \neq 0$ at the 5% level. In one setting, the t statistic was computed using OLS standard errors; in a second setting, heteroscedasticity and autocorrelation consistent (HAC) standard errors were used. The sample sizes T that were considered are 50, 100, 200, 400, 800, 1600, 3200, 6400. The number of replications in the Monte Carlo experiment was 10000.

T	50	100	200	400	800	1600	3200	6400
t statistic w/ OLS SEs								
t statistic w/ HAC SEs	29.74%	20.80%	13.33%	10.36%	7.85%	6.64%	6.31%	5.17%

Table 1: empirical rejection frequencies of the null hypothesis in (7).

5. Table 1 displays the empirical rejection frequencies of H_0 for both varieties of the t statistic and all sample sizes. Explain these findings.

page 3 of 3