

Faculty of Economics and Business Administration

Exam:

Adv Econometrics I 4.1

Code:

E_EORM_AECTR

Coordinator:

K. A. Lasak

Date:

October 22, 2012

Time:

08:45h

Duration:

2 hours 45 minutes

11-30

Calculator allowed:

No

Graphical calculator

allowed:

No

Number of questions: 3

Type of questions:

Open

Answer in:

English

Remarks:

Exam will be handed to attendants in room HG-04A05.

Credit score:

100 credits counts for a 10

Grades:

The grades will be made public on Monday, November 5, 2012

Inspection:

By appointment

Number of pages:

4 (including this page)

Good luck!

EXAM Advanced Econometrics 4.1

22 October 2012, 08.45 - 11.30 a.m.

- This exam consists of a total of 4 numbered pages.
- You have 2 hours 45 minutes for the exam.
- Read the entire question, before starting to answer. Questions are not explicitly in order of difficulty, so temporarily skip sub-questions if you do not know the answer.
- Motivate all your answers and computations.
- Describe your derivations clearly. Use clear notation.
- Be concise in all your answers.
- Answers should be in English.
- For each sub-question the number of points (on a scale of 100) is clearly indicated.
- The questions should be handed back at the end of the exam. You may not take them with you!

Good luck!

1. (35/100) Consider the linear regression with the error term following an AR(1) process, i.e.:

$$y_t = X_t \beta + u_t$$
 $u_t = \rho u_{t-1} + \epsilon_t$ $\epsilon_t \sim iid(0, \sigma_{\epsilon}^2)$ $|\rho| < 1$ $t = 1, \dots, n.$ (1)

- (a) (6/100) Derive a dynamic version of this model and discuss how to test for AR(1) effects.
- (b) (6/100) Discuss how to test whether u_t is homoskedastic or heteroskedastic.
- (c) (6/100) Derive asymptotic distribution of β_{MM} , Method of Moments estimator of β . Indicate all assumptions you need to derive your result.
- (d) (6/100) Explain how to choose weighting matrix (W) to get efficient β_{MM} .
- (e) (5/100) Write down explicitly the form of $\Omega(\rho)$, the covariance matrix of the vector u.
- (f) (6/100) Describe efficient estimation of β based on the decomposition $\Omega^{-1} = \Psi \Psi^{T}$.
- 2. (35/100) Consider the following linear regression model:

$$y = X\beta + u$$
 $E(uu') = \sigma^2 I,$ (2)

where at least one of the explanatory variables in the $n \times k$ matrix X is assumed not to be predetermined with respect to the error term u. Suppose for each observation t we can find $E(u_t|\Omega_t)=0$ and we can form $n \times l$ matrix W s.t. $W_t \in \Omega_t$, where u_t and W_t denote t-th element of u and W respectively. Ω_t is an information set in period t, $t=1,\ldots,n$.

- (a) (5/100) Show that OLS is no longer consistent in this case.
- (b) (6/100) State the criterion function that you minimize to obtain an efficient estimator of β . Demonstrate that F.O.C for minimization are equivalent to the moment conditions. Derive resulting estimator $\hat{\beta}$.
- (c) (6/100) Discuss consistency of $\hat{\beta}$.
- (d) (6/100) Derive the asymptotic distribution of $\sqrt{n}(\hat{\beta} \beta_0)$, where β_0 is true value of β .
- (e) (6/100) Discuss the optimal choice of instruments (W) in just identified case l=k.
- (f) (6/100) Discuss the optimal choice (in terms of J, an $l \times k$ matrix) of effective instruments (WJ) in overidentified case. i.e. when l > k.

- 3. (30/100) Consider GMM estimation with the columns of the $n \times l$ matrix W used as instrumental variables (n is number of observations, l is number of instruments). Suppose also the n-vector $f(\theta)$ of elementary zero functions has a covariance matrix $\sigma^2 I$ (except in question 3(c)).
 - (a) (6/100) Show that the GMM criterion function is

$$\frac{1}{\sigma^2} f^T(\theta) P_W f(\theta). \tag{3}$$

where f^T stands for transpose of f and P_W is orthogonal projection on to the space of instrumental variables W.

(b) Show that, whenever the instruments are predetermined, the artificial regression

$$f(\theta) = -P_W F(\theta)b + residuals, \tag{4}$$

where b is regression parameter, $n \times k$ matrix $F(\theta)$ has typical element $F_{ti}(\theta) \equiv \frac{\partial f_t(\theta)}{\partial \theta_i}$, with θ_i the i-th element of θ , $i=1,\ldots k$, $t=1,\ldots n$, satisfies all the requisite properties for hypothesis testing. i.e.

- i. (6/100) the regressand is orthogonal to the regressors when they are evaluated at the GMM estimator $\hat{\theta}$ obtained by minimizing (3);
- ii. (6/100) the OLS covariance matrix from (4) is a consistent estimate of the asymptotic variance of that estimator;
- iii. (6/100) regression (4) admits one-step estimator. i.e. when (4) is evaluated at any consistent estimator $\hat{\theta}$, the OLS parameter estimates \hat{b} are such that $n^{1/2}(\hat{\theta} \hat{\theta}) \stackrel{a}{=} n^{1/2}\hat{b}$.
- (c) (6/100) Derive a heteroskedasticity robust version of the artificial regression (4), assuming that the covariance matrix of the vector $f(\theta)$ of elementary zero functions is diagonal, but otherwise arbitrary.