Exam Advanced Econometrics Master Econometrics & Operations Research Vrije Universiteit Amsterdam 25 October 2005 15.15 – 18.00 - This exam consists of 3 numbered pages - You may use a calculator for numerical computations. - Read the whole Questions first, before answering. - Motivate all your answers and computations. - Describe your computations clearly. - Use clear notation in your derivations. - Be concise in all your answers - Answers should be in English - For all tests use a significance level of 5%, unless state otherwise - For each question the number of points (on a scale of 100) is clearly indicated. - The questions should be handed back at the end of the exam. You may not take them with you. 1. (30/100) Consider the partitioned regression model: $$y = X\beta + u, \quad u \sim N(0, \sigma^2 I_n) \tag{1}$$ $$= \begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + u, \tag{2}$$ where the matrices and vectors have the following sizes $$y$$, X , β , X_1 , X_2 , β_1 , β_2 . $(n \times 1)$ $(n \times k_1)$ $(n \times k_2)$ $(k_1 \times 1)$ $(k_2 \times 1)$ X is a matrix of exogenous variables. - (a) Formulate and prove the Frisch-Waugh-Lovell theorem. - (b) Model (1) is estimated by OLS and the residuals are denoted by \hat{u}_t . Show that $Var(\hat{u}_t) < \sigma_0^2$, where σ_0^2 is the true value of σ^2 . - (c) Suppose in this question that the true DGP is $$y = X_1 \beta_1 + u \tag{3}$$ However, we estimate model (2) by OLS. Denote the estimator of β_1 by $\hat{\beta}_1$. Is $\hat{\beta}_1$ still unbiased and consistent? Denote the OLS estimator of β_1 in (3) by $\tilde{\beta}_1$. If we compare $\tilde{\beta}_1$ with $\hat{\beta}_1$, which of the two is more efficient. Or can't we we say anything about it? - (d) Suppose in this question that model (2) is the true DGP, but we estimate model (3) by OLS. What can you say about the properties of the OLS estimator for β_1 , i.e. is the estimator unbiased and consistent? - (e) We wish to test for $\beta_2 = 0$. Derive the *F*-statistic and express it in terms of *y*. What are the distributions of the nominator and the denominator of the *F*-statistic? - (f) We wish to calculate the p-value of the test $\beta_2 = 0$. Describe a nonparametric bootstrap procedure to obtain the p-value. - 2. (25/100) Consider an analysis of the model $$y_t = \beta_1 + \beta_2 x_{1,t} + \beta_3 x_{2,t} + \beta_2 \beta_3 x_{3,t} + u_t; \ u_t \sim IID(0, \sigma^2)$$ (4) with Gauss Newton Regressions. - (a) Discuss One-step estimation of the regression parameters of model (4). Hint: Derive first a root-n consistent estimator of the regression parameters. - (b) Discuss iterative estimation of model (4) using Gauss Newton regressions. What's the difference in asymptotic properties if we compare the iterative estimator with the estimator derived under (a)? - (c) Suppose an economic theory suggests that $\beta_2\beta_3 = 1$ in model (4). Show how to estimate the model using GNR under this restriction. - (d) How can you test the restriction $\beta_2\beta_3 = 1$ by GNR? Describe the test statistic, its asymptotic distribution under the null hypothesis and its critical region. Hint: first rewrite the restriction as a zero restriction, before applying the GNR theory. 3. (25/100) Consider the linear model $$y = X\beta + u$$, $E(u|X) = 0$, $E(uu'|X) = \Omega(\gamma_0, \gamma) = \operatorname{diag}\{\exp(\gamma_0 + Z_1\gamma), \dots, \exp(\gamma_0 + Z_n\gamma)\},$ (5) where y is the $n \times 1$ observation vector, X is a $N \times k$ predetermined matrix, β is a fixed unknown $k \times 1$ coefficient vector, $Z = (Z'_1, \ldots, Z'_n)'$ is a $n \times m$ predetermined matrix, γ_0 is a fixed unknown constant and γ is a fixed unknown $m \times 1$ coefficient vector. Note that diag $\{x_1, \ldots, x_n\}$ defines a diagonal matrix with scalar x_t as its t-th diagonal element. - (a) What are the asymptotic properties of the OLS estimator of β ? - (b) Assume that γ is known. Consider the method of moment (MM) estimator for β . What is the variance matrix of the MM estimator of β ? Which weighting matrix produces the most efficient estimator? Motivate your answer. - (c) Assume that γ is unknown. Describe a feasible procedure for the estimation of β , γ_0 and γ of the linear model (5). - (d) Does your procedure in (c) produce consistent estimates? Motivate your answer. - (e) Describe a specification test for heteroskedasticity in model (5). Provide the asymptotic distribution of your test statistic. - 4. (20/100) Consider ML estimation of a model with loglikelihood $l(y^n, \theta) = \sum_{t=1}^n l_t(y^t, \theta)$. - (a) Discuss type 1 and type 2 ML estimation, in particular discuss the likelihood equations for type 2 ML estimation. - (b) Discuss the asymptotic distribution of the gradient of the loglikelihood in the context of type 2 ML estimation in the case of independent observations y_t . - (c) Given consistency, given the information matrix equality, given standard regularity assumptions, and assuming correct specification of the model, derive the asymptotic normality of the type 2 ML estimator $\hat{\theta}$. Compute the rate of convergence and the asymptotic covariance matrix of $\hat{\theta}$. Hint: use a proper Taylor expansion of the likelihood equations and scale by proper powers of n. - (d) Suppose the information matrix equality does not hold. How would you derive the asymptotic covariance matrix of $\hat{\theta}$ in that case?