Exam Advanced Econometrics Master Econometrics & Operations Research Vrije Universiteit Amsterdam 25 October 2005 15.15 – 18.00

- This exam consists of 3 numbered pages
- You may use a calculator for numerical computations.
- Read the whole Questions first, before answering.
- Motivate all your answers and computations.
- Describe your computations clearly.
- Use clear notation in your derivations.
- Be concise in all your answers
- Answers should be in English
- For all tests use a significance level of 5%, unless state otherwise
- For each question the number of points (on a scale of 100) is clearly indicated.
- The questions should be handed back at the end of the exam. You may not take them with you.

1. (30/100) Consider the partitioned regression model:

$$y = X\beta + u, \quad u \sim N(0, \sigma^2 I_n) \tag{1}$$

$$= \begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + u, \tag{2}$$

where the matrices and vectors have the following sizes

$$y$$
, X , β , X_1 , X_2 , β_1 , β_2 . $(n \times 1)$ $(n \times k_1)$ $(n \times k_2)$ $(k_1 \times 1)$ $(k_2 \times 1)$

X is a matrix of exogenous variables.

- (a) Formulate and prove the Frisch-Waugh-Lovell theorem.
- (b) Model (1) is estimated by OLS and the residuals are denoted by \hat{u}_t . Show that $Var(\hat{u}_t) < \sigma_0^2$, where σ_0^2 is the true value of σ^2 .
- (c) Suppose in this question that the true DGP is

$$y = X_1 \beta_1 + u \tag{3}$$

However, we estimate model (2) by OLS. Denote the estimator of β_1 by $\hat{\beta}_1$. Is $\hat{\beta}_1$ still unbiased and consistent?

Denote the OLS estimator of β_1 in (3) by $\tilde{\beta}_1$. If we compare $\tilde{\beta}_1$ with $\hat{\beta}_1$, which of the two is more efficient. Or can't we we say anything about it?

- (d) Suppose in this question that model (2) is the true DGP, but we estimate model (3) by OLS. What can you say about the properties of the OLS estimator for β_1 , i.e. is the estimator unbiased and consistent?
- (e) We wish to test for $\beta_2 = 0$. Derive the *F*-statistic and express it in terms of *y*. What are the distributions of the nominator and the denominator of the *F*-statistic?
- (f) We wish to calculate the p-value of the test $\beta_2 = 0$. Describe a nonparametric bootstrap procedure to obtain the p-value.
- 2. (25/100) Consider an analysis of the model

$$y_t = \beta_1 + \beta_2 x_{1,t} + \beta_3 x_{2,t} + \beta_2 \beta_3 x_{3,t} + u_t; \ u_t \sim IID(0, \sigma^2)$$
(4)

with Gauss Newton Regressions.

- (a) Discuss One-step estimation of the regression parameters of model (4). Hint: Derive first a root-n consistent estimator of the regression parameters.
- (b) Discuss iterative estimation of model (4) using Gauss Newton regressions. What's the difference in asymptotic properties if we compare the iterative estimator with the estimator derived under (a)?
- (c) Suppose an economic theory suggests that $\beta_2\beta_3 = 1$ in model (4). Show how to estimate the model using GNR under this restriction.
- (d) How can you test the restriction $\beta_2\beta_3 = 1$ by GNR? Describe the test statistic, its asymptotic distribution under the null hypothesis and its critical region. Hint: first rewrite the restriction as a zero restriction, before applying the GNR theory.

3. (25/100) Consider the linear model

$$y = X\beta + u$$
, $E(u|X) = 0$, $E(uu'|X) = \Omega(\gamma_0, \gamma) = \operatorname{diag}\{\exp(\gamma_0 + Z_1\gamma), \dots, \exp(\gamma_0 + Z_n\gamma)\},$ (5)

where y is the $n \times 1$ observation vector, X is a $N \times k$ predetermined matrix, β is a fixed unknown $k \times 1$ coefficient vector, $Z = (Z'_1, \ldots, Z'_n)'$ is a $n \times m$ predetermined matrix, γ_0 is a fixed unknown constant and γ is a fixed unknown $m \times 1$ coefficient vector. Note that diag $\{x_1, \ldots, x_n\}$ defines a diagonal matrix with scalar x_t as its t-th diagonal element.

- (a) What are the asymptotic properties of the OLS estimator of β ?
- (b) Assume that γ is known. Consider the method of moment (MM) estimator for β . What is the variance matrix of the MM estimator of β ? Which weighting matrix produces the most efficient estimator? Motivate your answer.
- (c) Assume that γ is unknown. Describe a feasible procedure for the estimation of β , γ_0 and γ of the linear model (5).
- (d) Does your procedure in (c) produce consistent estimates? Motivate your answer.
- (e) Describe a specification test for heteroskedasticity in model (5). Provide the asymptotic distribution of your test statistic.
- 4. (20/100) Consider ML estimation of a model with loglikelihood $l(y^n, \theta) = \sum_{t=1}^n l_t(y^t, \theta)$.
 - (a) Discuss type 1 and type 2 ML estimation, in particular discuss the likelihood equations for type 2 ML estimation.
 - (b) Discuss the asymptotic distribution of the gradient of the loglikelihood in the context of type 2 ML estimation in the case of independent observations y_t .
 - (c) Given consistency, given the information matrix equality, given standard regularity assumptions, and assuming correct specification of the model, derive the asymptotic normality of the type 2 ML estimator $\hat{\theta}$. Compute the rate of convergence and the asymptotic covariance matrix of $\hat{\theta}$. Hint: use a proper Taylor expansion of the likelihood equations and scale by proper powers of n.
 - (d) Suppose the information matrix equality does not hold. How would you derive the asymptotic covariance matrix of $\hat{\theta}$ in that case?